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Types of Process Models

Time-dependent modeling concerns properties of a system changing
through time.

Steady-state modeling addresses properties of a steady (equilibrium) state
without explicit regard to time.

Forward modeling starts with the given state of a system at a time ¢
(often to = 0) and predicts its properties at later times t > t.
Some examples for demonstration:

@ Val Pola rock avalanche
@ Snow avalanche hitting a pond
@ Evolution of the drainage system in and around the Alps

Backward modeling attempts to reconstruct properties at earlier times
t < to from the present state. This is in general difficult and
non-unique, but one of the challenges in geology.
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Time-dependent systems are described by a set of time-dependent
variables, e. g.,

@ n(t) as the number of individuals in a population,

@ T(t) as the temperature of a gas, or

e x(t), y(t) und z(t) for the motion of a particle in space.

In theory, u(t) is often used for the time-dependent variable. If the system
involves more than one variable, u(t) is assumed to be a vector consisting
of several components u1(t), ua(t), ..., un(t).
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Discrete and Continuous Systems

The evolution of a system may take place in discrete steps or continuously.
Large systems are often approximated by continuous descriptions.

Examples
@ The movement of a particle is continuous.

@ Radioactive decay is a discrete, stochastic process, but is often
described by a continuous differential equation

The Role of Derivatives

The time-derivative of a function u(t) (&u(t), Zu(t), u/(t), i(t), ...)
describes the rate of change in u(t) per time.
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Differential Equations

e Continuous time-dependent systems are described by (systems of)
differential equations involving time-derivatives.

o A differential equation is an equation that involves the derivative(s) of
an unknown function (and in many cases also the functions itself).

@ A system characterized by more than one variable (i.e., if u(t) is a
vector) is described by a system of (coupled) differential equations.
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Examples of Differential Equations

Radioactive decay:

d

au(t) = —Au(t)
Unlimited growth (simplest model):

d
Eu(t) = Au(t)

Logistic growth with limited resources:

e b
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Examples of Systems of Differential Equations

Radioactive decay chain:

d
Eul(t) = —)\1 Ul(t)
d
d_tU2(t) = A\ Ul(t) — X UQ(t)
d
Eun—l(t) = A2 Un—2(t) — An-1 Un—l(t)
d
Eun(t) = A1 Un—l(t)
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Examples of Systems of Differential Equations

Chemical reaction (simplest version):

%A(t) — —k A1) B(t) + k2 C(t)

%B(t) — ki A(t) B(t) + ko C(1)

%c(t) = ki A(t) B(t) — ko C(t)
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Examples of Systems of Differential Equations

Predator-prey model in biology:

dt c

9p) = A (1— @) P(t) — s P(1) Q(t)

Q) = u(
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Differential Equations

Differential Equations of First and Second Order

@ A system of differential equations of first order involves only
first-order derivatives. It can be written in the form

d
2u(t) = F(u(e). )

and directly defines the actual rate of change in the variables.
@ A second-order system of differential equations involves first and
second-order derivatives and can be written in the form

2
%u(t) _ F<u(t),jtu(t),t>.

Mechanical systems are often described by second-order differential
equations (why?).
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Differential Equations of First and Second Order

@ Second-order systems can be transformed to first order by introducing

(an) additional variable(s) v(t) = %u(t):

d
Eu(t) = v(t)

d
aV(t) = F(u(t), v(t),t)

@ Systems of higher order than two hardly occur.

Initial Conditions

Each variable in a first-order system requires a given initial value at a time
to.
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Linear and Nonlinear Differential Equations

A differential equation (or a set of differential equations) is called linear if
it satisfies the following conditions:

o If u(t) and @(t) are solutions, then their sum u(t) + &(t) is also a
solution.

o If u(t) is a solution, then any multiple Au(t) is also a solution.

Most of the theory of differential equations refers to linear differential
equations.
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Although this topic fills books and classes for engineers, only a small
number of differential equations can be solved analytically, mainly:

Several linear problems => exp, sin, cos, ...
Separable equations:

%u(t) = F(u(t), t) with F(u(t),t) = f(u(t))g(t)

[etree = [ A5 = [ g
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Numerics of Differential Equations

Numerical Simulation

o Very few (systems of) differential equations can be solved analytically.

@ Numerical simulation of a continuous evolution requires a discrete
approximation.

The Finite-Difference Method

@ An approximate solution is computed for only at given times t1, to,
t3, ..., starting from the given initial state ty.

@ Computing the solution at the time t,41 using the known solution at
the time t, is called a (forward) time step.

@ In many cases, equidistant time steps of the same length dt are used,
so that t; = tp + dt, th = t; + J0t, t3 = tr + Ot, ...
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Difference Quotients

The time derivative must be approximated by a suitable difference
quotient. The common difference quotients are:

Right-hand difference quotient:

d _u(t+dt) — u(t)
EU(t) ~

Left-hand difference quotient:

d u(t) — u(t — dt)
Eu(f)

Q
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Difference Quotients

Central (symmetric) difference quotient:

d _u(t+4dt) —u(t —dt)
ai(t) ~ 26t

or

d st u(t+ot) — u(t)
—ult+ %) =
dtu( +2) 5t

The accuracy of all these approximations decreases with increasing
timestep length dt.
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The Explicit Euler Scheme

Inserting the finite-difference approximation with a right-hand difference
quotient into the differential equation leads to

u(t +4dt) —u(t)
5t ~ F(u(t),t),

\Z

u(t+0t) ~ u(t)+dtF(u(t), t).

Interpretation:

u(t) is known. From this, the rate of change S u(t) at the time ¢ is
computed, and this rate is assumed to persist up to the time t + dt.
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u(t+dt) — u(t)
ot

~ F(u(t+dt), t+dt),

\Z

u(t +0t) — ot F(u(t + dt), t +0t) =~ u(t).

Interpretation:
The rate of change at the end of the interval ¢t + dt is valid throughout the
interval [t, t + dt].

Problem:
u(t + dt) and thus F(u(t+ 0t), t + dt) is not known.
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Examples of Explicit and Implicit Discretization

Radioactive decay:
Explicit:

Fully implicit:

u(t+0t) = u(t)+dt(—Au(t))

u(t+0t) ~ u(t)+dt(—Au(t+ot))

u(t +0t) ~
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u(t)
1+60tA
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Numerics of Differential Equations

Examples of Explicit and Implicit Discretization

Logistic growth:
Explicit:

u(t+0t) ~ u(t)+ ot (1 - @) u(t)

Fully implicit:

u(t+ot) ~ u(t)+6t,\(1—M) u(t + dt)

\Z

 c(1-6tN) c(1-6tA)\?> ¢
u(t +ot) ~ 2Bh \/( s ) o
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Mixed Schemes

Explicit and implicit discretizations can also be combined, e. g., for logistic

growth

u(t+0t) ~ u(t)—i—ét)\(l—@) u(t + ot)

\Z

v =
16t (1-49)

c

u(t+6t) ~ u(t)+dtA <1 - M) u(t)
(L4 6t A) u(t)
t

u
1+ 9B y(

)

u(t+dt) =~

21 /29



Numerics of Differential Equations

[t
UNI
FREIBURG

The Crank-Nicholson Scheme

Specific mixture of explicit and fully implicit Euler scheme:

u(t +dt) —u(t)  F(u(t), t) + F(u(t +dt), t + t)

~

ot 2 '

so that

uU—i—ét)—%F(u(t—l—ét),t—i—ét) A u(t)—l—%F(u(t),t).

Advantages of the Different Schemes

| \

Explicit: simple
Fully implicit: often stable for large 0t

Crank-Nicholson: high accuracy for §t — 0; convergence of second order,
i.e., error o< §t2 instead of 5t

22/26



Numerics of Differential Equations

[t
UNI
FREIBURG

Explicit Schemes of Higher Order

An error o< 0t" with n > 1 can also be achieved by appropriate explicit
schemes, e.g., by the 4" order Runge-Kutta scheme

tkl + 2ky + 2k3 + kq
6

u(t+0t) ~u(t)+4o
with

ki = F(u(t), t) (like explicit Euler scheme)
ke = F(u(t)+ %k, t+ %)
ks = F(u(t)+ Lk, t + %)
ky = F(u(t)+ dtks, t+ 0t)
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Even if the equations cannot be solved analytically, several properties of
the solution can often be obtained without numerical simulations.

Fixed Points

A fixed point is a solution which remains constant through time. The fixed
points of a (system of) differential equation(s) are computed by solving

d
—u(t) = F(u(t)) = o.
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Stability of Fixed Points

A fixed point ur is stable if the system approaches the fixed point if it is
close to it. Stable fixed points are also called attractors.

For a single differential equation of first order: ur is stable if

u < ur

v for
0 u > uf

>
F(u) <

Alternative criterion:
—F(u)|,= < 0
| ( )|U ug

Fixed Points and the Stability of the Fully Implicit Euler Scheme

A time step of the fully implicity Euler scheme cannot cross a stable fixed
point.
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Nondimensional Variables

Idea: If the differential equation has a characteristic time t. and / or a
characteristic value u. of the solution u(t) (e.g., a fixed point),
introduce nondimensional variables

~ t
t = =
te
Ay u(t)
) = &
d .. td
i) = o= zu(t)

Advantage: Each of the transforms reduces the number of model
parameters by one.
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