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Mathematical Description of Time-Dependent Systems

Types of Process Models

Time-dependent modeling concerns properties of a system changing
through time.

Steady-state modeling addresses properties of a steady (equilibrium) state
without explicit regard to time.

Forward modeling starts with the given state of a system at a time t0
(often t0 = 0) and predicts its properties at later times t > t0.
Some examples for demonstration:

Val Pola rock avalanche
Snow avalanche hitting a pond
Evolution of the drainage system in and around the Alps

Backward modeling attempts to reconstruct properties at earlier times
t < t0 from the present state. This is in general difficult and
non-unique, but one of the challenges in geology.
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Mathematical Description of Time-Dependent Systems

Variables

Time-dependent systems are described by a set of time-dependent
variables, e. g.,

n(t) as the number of individuals in a population,

T (t) as the temperature of a gas, or

x(t), y(t) und z(t) for the motion of a particle in space.

In theory, u(t) is often used for the time-dependent variable. If the system
involves more than one variable, u(t) is assumed to be a vector consisting
of several components u1(t), u2(t), . . . , un(t).
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Mathematical Description of Time-Dependent Systems

Discrete and Continuous Systems

The evolution of a system may take place in discrete steps or continuously.
Large systems are often approximated by continuous descriptions.

Examples

The movement of a particle is continuous.

Radioactive decay is a discrete, stochastic process, but is often
described by a continuous differential equation

d

dt
u(t) = − λ u(t).

The Role of Derivatives

The time-derivative of a function u(t) ( d
dt u(t), ∂

∂t u(t), u′(t), u̇(t), . . . )
describes the rate of change in u(t) per time.
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Mathematical Description of Time-Dependent Systems

Differential Equations

Continuous time-dependent systems are described by (systems of)
differential equations involving time-derivatives.

A differential equation is an equation that involves the derivative(s) of
an unknown function (and in many cases also the functions itself).

A system characterized by more than one variable (i. e., if u(t) is a
vector) is described by a system of (coupled) differential equations.
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Mathematical Description of Time-Dependent Systems

Examples of Differential Equations

Radioactive decay:
d

dt
u(t) = − λ u(t)

Unlimited growth (simplest model):

d

dt
u(t) = λ u(t)

Logistic growth with limited resources:

d

dt
u(t) = λ u(t)− µ u(t)2
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Mathematical Description of Time-Dependent Systems

Examples of Systems of Differential Equations

Radioactive decay chain:

d

dt
u1(t) = −λ1 u1(t)

d

dt
u2(t) = λ1 u1(t)− λ2 u2(t)

...
d

dt
un−1(t) = λn−2 un−2(t)− λn−1 un−1(t)

d

dt
un(t) = λn−1 un−1(t)
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Mathematical Description of Time-Dependent Systems

Examples of Systems of Differential Equations

Chemical reaction (simplest version):

d

dt
A(t) = −k1 A(t)B(t) + k2 C (t)

d

dt
B(t) = −k1 A(t)B(t) + k2 C (t)

d

dt
C (t) = k1 A(t)B(t)− k2 C (t)
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Mathematical Description of Time-Dependent Systems

Examples of Systems of Differential Equations

Predator-prey model in biology:

d

dt
P(t) = λ

(
1− P(t)

c

)
P(t)− s P(t)Q(t)

d

dt
Q(t) = µ

(
s P(t)

n
− 1

)
Q(t)
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Differential Equations

Differential Equations of First and Second Order

A system of differential equations of first order involves only
first-order derivatives. It can be written in the form

d

dt
u(t) = F (u(t), t)

and directly defines the actual rate of change in the variables.

A second-order system of differential equations involves first and
second-order derivatives and can be written in the form

d2

dt2
u(t) = F

(
u(t),

d

dt
u(t), t

)
.

Mechanical systems are often described by second-order differential
equations (why?).
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Differential Equations

Differential Equations of First and Second Order

Second-order systems can be transformed to first order by introducing
(an) additional variable(s) v(t) = d

dt u(t):

d

dt
u(t) = v(t)

d

dt
v(t) = F (u(t), v(t), t)

Systems of higher order than two hardly occur.

Initial Conditions

Each variable in a first-order system requires a given initial value at a time
t0.
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Differential Equations

Linear and Nonlinear Differential Equations

A differential equation (or a set of differential equations) is called linear if
it satisfies the following conditions:

If u(t) and ũ(t) are solutions, then their sum u(t) + ũ(t) is also a
solution.

If u(t) is a solution, then any multiple λu(t) is also a solution.

Most of the theory of differential equations refers to linear differential
equations.
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Numerics of Differential Equations

Analytical Solution of Differential Equations

Although this topic fills books and classes for engineers, only a small
number of differential equations can be solved analytically, mainly:

Several linear problems exp, sin, cos, . . .

Separable equations:

d

dt
u(t) = F (u(t), t) with F (u(t), t) = f (u(t)) g(t)

g(t) =
d
dt u(t)

f (u(t))

∫
g(t) dt =

∫ d
dt u(t)

f (u(t))
dt =

∫
1

f (u)
du
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Numerics of Differential Equations

Numerical Simulation

Very few (systems of) differential equations can be solved analytically.

Numerical simulation of a continuous evolution requires a discrete
approximation.

The Finite-Difference Method

An approximate solution is computed for only at given times t1, t2,
t3, . . . , starting from the given initial state t0.

Computing the solution at the time tn+1 using the known solution at
the time tn is called a (forward) time step.

In many cases, equidistant time steps of the same length δt are used,
so that t1 = t0 + δt, t2 = t1 + δt, t3 = t2 + δt, . . .
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Numerics of Differential Equations

Difference Quotients

The time derivative must be approximated by a suitable difference
quotient. The common difference quotients are:

Right-hand difference quotient:

d

dt
u(t) ≈ u(t + δt)− u(t)

δt

Left-hand difference quotient:

d

dt
u(t) ≈ u(t)− u(t − δt)

δt
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Numerics of Differential Equations

Difference Quotients

Central (symmetric) difference quotient:

d

dt
u(t) ≈ u(t + δt)− u(t − δt)

2δt

or
d

dt
u(t + δt

2 ) ≈ u(t + δt)− u(t)

δt

The accuracy of all these approximations decreases with increasing
timestep length δt.
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Numerics of Differential Equations

The Explicit Euler Scheme

Inserting the finite-difference approximation with a right-hand difference
quotient into the differential equation leads to

u(t + δt)− u(t)

δt
≈ F (u(t), t),

u(t + δt) ≈ u(t) + δt F (u(t), t).

Interpretation:
u(t) is known. From this, the rate of change d

dt u(t) at the time t is
computed, and this rate is assumed to persist up to the time t + δt.

17 / 26



Numerics of Differential Equations

The Fully Implicit Euler Scheme

Using a left-hand difference quotient leads to

u(t + δt)− u(t)

δt
≈ F (u(t + δt), t + δt),

u(t + δt)− δt F (u(t + δt), t + δt) ≈ u(t).

Interpretation:
The rate of change at the end of the interval t + δt is valid throughout the
interval [t, t + δt].

Problem:
u(t + δt) and thus F (u(t + δt), t + δt) is not known.
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Numerics of Differential Equations

Examples of Explicit and Implicit Discretization

Radioactive decay:
Explicit:

u(t + δt) ≈ u(t) + δt (−λ u(t))

Fully implicit:

u(t + δt) ≈ u(t) + δt (−λ u(t + δt))

u(t + δt) ≈ u(t)

1 + δt λ
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Numerics of Differential Equations

Examples of Explicit and Implicit Discretization

Logistic growth:
Explicit:

u(t + δt) ≈ u(t) + δt λ

(
1− u(t)

c

)
u(t)

Fully implicit:

u(t + δt) ≈ u(t) + δt λ

(
1− u(t + δt)

c

)
u(t + δt)

u(t + δt) ≈ − c (1− δtλ)

2δtλ
±

√(
c (1− δtλ)

2δtλ

)2

+
c

δtλ
u(t)
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Numerics of Differential Equations

Mixed Schemes

Explicit and implicit discretizations can also be combined, e. g., for logistic
growth

u(t + δt) ≈ u(t) + δt λ

(
1− u(t)

c

)
u(t + δt)

u(t + δt) ≈ u(t)

1− δt λ
(

1− u(t)
c

)
or

u(t + δt) ≈ u(t) + δt λ

(
1− u(t + δt)

c

)
u(t)

u(t + δt) ≈ (1 + δt λ) u(t)

1 + δt λ
c u(t)
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Numerics of Differential Equations

The Crank-Nicholson Scheme

Specific mixture of explicit and fully implicit Euler scheme:

u(t + δt)− u(t)

δt
≈ F (u(t), t) + F (u(t + δt), t + δt)

2
,

so that

u(t + δt)− δt

2
F (u(t + δt), t + δt) ≈ u(t) +

δt

2
F (u(t), t).

Advantages of the Different Schemes

Explicit: simple

Fully implicit: often stable for large δt

Crank-Nicholson: high accuracy for δt → 0; convergence of second order,
i. e., error ∝ δt2 instead of δt
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Numerics of Differential Equations

Explicit Schemes of Higher Order

An error ∝ δtn with n > 1 can also be achieved by appropriate explicit
schemes, e. g., by the 4th order Runge-Kutta scheme

u(t + δt) ≈ u(t) + δt
k1 + 2k2 + 2k3 + k4

6

with

k1 = F (u(t), t) (like explicit Euler scheme)

k2 = F (u(t) + δt
2 k1, t + δt

2 )

k3 = F (u(t) + δt
2 k2, t + δt

2 )

k4 = F (u(t) + δtk3, t + δt)
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Analytical Considerations

Motivation

Even if the equations cannot be solved analytically, several properties of
the solution can often be obtained without numerical simulations.

Fixed Points

A fixed point is a solution which remains constant through time. The fixed
points of a (system of) differential equation(s) are computed by solving

d

dt
u(t) = F (u(t)) = 0.
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Analytical Considerations

Stability of Fixed Points

A fixed point uf is stable if the system approaches the fixed point if it is
close to it. Stable fixed points are also called attractors.

For a single differential equation of first order: uf is stable if

F (u) > 0
F (u) < 0

for
u < uf
u > uf

Alternative criterion:
d

du
F (u)|u=uf < 0

Fixed Points and the Stability of the Fully Implicit Euler Scheme

A time step of the fully implicity Euler scheme cannot cross a stable fixed
point.
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Analytical Considerations

Nondimensional Variables

Idea: If the differential equation has a characteristic time tc and / or a
characteristic value uc of the solution u(t) (e. g., a fixed point),
introduce nondimensional variables

t̂ =
t

tc

û(t̂) =
u(t)

uc

d

dt̂
û(t̂) =

tc
uc

d

dt
u(t)

Advantage: Each of the transforms reduces the number of model
parameters by one.
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