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Introduction

Seismology

Comprises all about earthquakes and the propagation of seismic waves
in the Earth.

One of the main fields of solid-earth geophysics.

Has provided the majority of our knowledge on Earth’s interior.

Seismics

Exploration of the deep and shallow subsurface with the help of
artificial seismic waves.

The perhaps most important field of applied geophysics.
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Worldwide Distribution of Earthquakes
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Introduction

Earthquake Hazard

Source: Global Seismic Hazard Assessment Program
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http://www.seismo.ethz.ch/static/gshap/global/caution.html


Introduction

Earthquakes with 1000 or more Deaths 1900–2014
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begineqnarray-1ex] Data: USGS Earthquake Hazards Program
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https://earthquake.usgs.gov/earthquakes/world/world_deaths.php


Introduction

The First “Seismometer” (132 a.D.)
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Introduction

History of Seismology

1660 basic law of elasticity R. Hooke

1821–22 differential equations of elasticity C. Navier
A. L. Cauchy

1830 theory of two fundamental types of elastic
waves (P- and S-wave)

S. D. Poisson

1875 First “serious” seismometer F. Gecchi

1887 theory of the first type of surface waves J. W. Strutt (3.
Lord Rayleigh)

1889 first recording of a distant earthquake

1892 first compact seismometer, used at about
40 stations

J. Milne

1894 statistics of aftershocks F. Omori

1903 12 degree scale for the intensity of earth-
quakes based on the damage

G. Mercalli
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Introduction

History of Seismology

1906–1913 detection of the liquid core of the earth and
determination of its size

R. D. Oldham,
B. Gutenberg

1909 detection of the crust-mantle discontinuity A. Mohorovic̆ić

1911 theory of a second type of surface waves A. E. H. Love

1935 local magnitude as an “objective” measure
of earthquake intensity

C. F. Richter

1936 detection of the inner, solid core I. Lehmann

1954 frequency-magnitude relation of earth-
quakes

B. Gutenberg,
C. F. Richter

1975 first successful short-term prediction of a
strong earthquake

1977 moment magnitude as a measure of earth-
quake source strength

H. Kanamori
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Theory of Seismic Waves

The Navier-Cauchy Equations in Seismology

Small, but spatially and temporally variable displacement ~u(~x , t)

Neglect gravity

Sign convention as in mathematics, physics, and engineering

Elastic deformation

ρ
∂2

∂t2
~u =


∂σ11
∂x1

+ ∂σ12
∂x2

+ ∂σ13
∂x3

∂σ21
∂x1

+ ∂σ22
∂x2

+ ∂σ23
∂x3

∂σ31
∂x1

+ ∂σ32
∂x2

+ ∂σ33
∂x3

 = div(σ) (1)

with the stress tensor

σ = λ εv 1 + 2µ ε, (2)
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Theory of Seismic Waves

The Navier-Cauchy Equations in Seismology

the strain tensor ε consisting of the components

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (3)

the volumetric strain

εv = ε11 + ε22 + ε33, (4)

the density ρ and the Lamé parameters of the medium λ and µ

13 / 139



One-Dimensional Wave Propagation

The Navier-Cauchy Equations in 1D

Displacement u(x , t) instead of ~u(~x , t).

ρ
∂2

∂t2
u =

∂

∂x
σ (5)

with

σ = (λ+ 2µ) ε = (λ+ 2µ)
∂

∂x
u (6)

ρ
∂2

∂t2
u(x , t) =

∂

∂x

(
(λ+ 2µ)

∂

∂x
u(x , t)

)
(1D wave equation) (7)
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One-Dimensional Wave Propagation

Solution of the 1D Wave Equation

If λ and µ are constant:

ρ
∂2

∂t2
u(x , t) = (λ+ 2µ)

∂2

∂x2
u(x , t) (8)

Solution:

u(x , t) = f (t ± sx) (9)

where

f = arbitrary function describing the shape of the wave

s =

√
ρ

λ+ 2µ
= slowness

The wave moves in positive or negative x direction with a velocity v = 1
s .
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One-Dimensional Wave Propagation

Example
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One-Dimensional Wave Propagation

The Retarded Time

τ = t ± sx is called retarded time.

Meaning: At the position x and time t we observe what happened at the
origin (x = 0, e. g. earthquake focus) at the retarded time τ = t ± sx .

The Shape of the Wave

Examples for the function f :

f (τ) =

{
1 for τ ≥ T
0 else

describes a step-like shape (shock wave).

f (τ) =

{
1 for |τ | ≤ T

2
0 else

describes a boxcar-shaped wave.

f (τ) = a cos(ωτ), f (τ) = a sin(ωτ) or f (τ) = a e iωτ describes a
harmonic wave with an angular frequency ω and amplitude a.
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Harmonic Waves

Basic Terms
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Harmonic Waves

Basic Terms

Time domain:

Angular frequency: ω [ 1
s ]

Frequency: ν = ω
2π [ 1

s ]
Period: T = 1

ν = 2π
ω [s]

Spatial wave pattern:

Wave number: k = ωs [ 1
m ]

Wavelength: L = 2π
k = 1

νs [m]
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Harmonic Waves

The Complex Exponential Function vs. Sine and Cosine

With e iφ = cosφ+ i sinφ, the complex exponential function combines the
real exponential function with the sine and cosine functions.
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Harmonic Waves

The Complex Exponential Function vs. Sine and Cosine

Re
(
e iωτ

)
= cos (ωτ) and Im

(
e iωτ

)
= sin (ωτ) (10)

Real part and imaginary part of the complex solution can be considered as
independent real solutions.

Derivatives of the complex solutions are simpler than those of the real
solutuions:

∂

∂τ
e iωτ = iωe iωτ (11)

while

∂

∂τ
cos (ωτ) = − ω sin (ωτ) and

∂

∂τ
sin (ωτ) = ω cos (ωτ) (12)
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Seismic Body Waves

Seismic Waves in 3D

Complications towards the 1D case:

Displacement ~u(~x , t) is a vector.

Propagation in arbitrary direction in space instead of the positive or
negative x axis only.
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Seismic Body Waves

Fundamental Types of Body Waves

Two types of independent plane waves in an infinite, homogeneous elastic
medium:

Compressional wave (longitudinal wave, primary wave)

Source: L. Braile, Purdue University
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http://web.ics.purdue.edu/~braile/edumod/waves/Pwave.htm
http://web.ics.purdue.edu/~braile/edumod/waves/WaveDemo.htm


Seismic Body Waves

Fundamental Types of Body Waves

Shear wave (transverse wave, secondary wave)

Source: L. Braile, Purdue University
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http://web.ics.purdue.edu/~braile/edumod/waves/Swave.htm
http://web.ics.purdue.edu/~braile/edumod/waves/WaveDemo.htm


Seismic Body Waves

Plane Waves in Infinite, Homogeneous, and Isotropic Media

Plane wave: ~u(~x , t) is constant on parallel planes.

Mathematical description:

~u(~x , t) = f (t −~s · ~x)~a (13)

or for a harmonic wave:

~u(~x , t) = e iω(t−~s·~x)~a (14)

where

~s = slowness vector

~a = amplitude vector (constant)

The wave moves in direction of ~s with a velocity v = 1
|~s| .
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Seismic Body Waves

Plane Waves in Infinite, Homogeneous, and Isotropic Media

Simplest version: propagation in x1 direction, ~s =
(

s
0
0

)

~u(~x , t) = f (t − sx1)~a (15)

ε = − s f ′(t − sx1)

 a1
1
2a2

1
2a3

1
2a2 0 0
1
2a3 0 0

 (16)

σ = − s f ′(t − sx1)

 (λ+ 2µ)a1 µa2 µa3

µa2 λa1 0
µa3 0 λa1

 (17)
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Seismic Body Waves

Plane Waves in Infinite, Homogeneous, and Isotropic Media

If λ and µ are constant:

div(σ) = s2f ′′(t − sx1)

(
(λ+ 2µ)a1

µa2

µa3

)
(18)

Insert into the Navier-Cauchy equations:

ρ
∂2

∂t2
~u = ρf ′′(t − sx1)~a (19)

= div(σ) = s2f ′′(t − sx1)

(
(λ+ 2µ)a1

µa2

µa3

)
(20)

Can only be satisfied if a2 = a3 = 0 and s =
√

ρ
λ+2µ (longitudinal

polarization) or a1 = 0 and s =
√

ρ
µ (transverse polarization).
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Seismic Body Waves

Plane Waves in Infinite, Homogeneous, and Isotropic Media

General case considered in assignment 2: Navier-Cauchy equations can be
satisfied only if either ~a is parallel (or opposite) to ~s or normal to ~s.

Transverse wave: ~a is normal to ~s (~a ·~s = 0)

|~s|2 =
ρ

µ
, vs =

1

|~s|
=

√
µ

ρ
(21)

Longitudinal wave: ~a is parallel or opposite to ~s

|~s|2 =
ρ

λ+ 2µ
, vp =

1

|~s|
=

√
λ+ 2µ

ρ
(22)
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Seismic Body Waves

Comparison with Sound Waves in Liquids and Gases

The longitudinal wave is similar to sound waves in liquids and gases, while
the transverse wave has no counterpart in liquids and gases.

Seismic Velocities

Medium Longitudinal wave [ km
s ] Transverse wave [ km

s ]

air 0.34 –

water 1.45 –

wood about 3 about 1.8

Earth∗ 5.8–13.7 3.4–7.2

∗Parametric Earth Models (PEM), not valid for the shallow subsurface
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http://ds.iris.edu/spud/earthmodel/9991828


Seismic Body Waves

Seismic Velocities

vp
vs

=

√
λ+ 2µ

µ
≥
√

4

3
≈ 1.15 (23)

Velocity vp of the longitudinal wave is always higher than the velocity vs of
the transverse wave.

Longitudinal wave always arrives prior to the transverse wave.

longitudinal wave = primary wave (P-wave)
transverse wave = secondary wave (S-wave)
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Seismic Body Waves

Typical vp-vs Ratios

For solid rocks:

vp
vs

=

√
λ+ 2µ

µ
≈
√

3 ≈ 1.7 (24)

for λ ≈ µ.

For soil or unconsolidated rocks:

vp
vs
≈ 2.5 (25)
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Seismic Body Waves

Seismic Velocities according to the Parametric Earth Models (PEM)
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http://ds.iris.edu/spud/earthmodel/9991828


Seismic Body Waves

Density according to the Parametric Earth Models (PEM)
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http://ds.iris.edu/spud/earthmodel/9991828


Seismic Body Waves

Lamé Parameters according to the Parametric Earth Models (PEM)
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http://ds.iris.edu/spud/earthmodel/9991828


Seismic Body Waves

Typical P-wave Velocities in the Shallow Subsurface

Medium vp [ km
s ] Medium vp [ km

s ]

weathering zone 0.1–0.5 clay 1.2–2.8

dry sand 0.3–0.6 claystone 2.2–4.2

water-saturated sand 1.3–1.8 limestone 3–6

sandstone 1.8–4 halite 4.5–6.5

pit coal 1.6–1.9 granite 5–6.5
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Propagation of Seismic Waves in Inhomogeneous Media

Ray Optics in Seismology

Extensions towards the plane wave approach: Replace

~u(~x , t) = f (t −~s · ~x)~a (26)

by

~u(~x , t) = f (t − ψ(~x))~a(~x) (27)

Retarded time τ = t − ψ(~x) instead of τ = t −~s · ~x with a general
phase function ψ(~x)

Spatially variable amplitude vector ~a(~x)

Surfaces where ψ(~x) is constant define wave fronts (no longer planes).

Wave propagates locally in direction of ∇ψ(~x).

Lines following the direction of ∇ψ are called ray paths (not straight lines).
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Propagation of Seismic Waves in Inhomogeneous Media

Ray Optics in Seismology

Compute σ(~x , t) and insert it into the Navier-Cauchy equations.

~a(~x) must be either parallel (or opposite) or normal to ∇ψ(~x), and

|∇ψ(~x)|2 =
ρ

λ+ 2µ
or |∇ψ(~x)|2 =

ρ

µ
(Eikonal equation). (28)

Change in amplitude in 1D (amplification of waves, e. g., by sediment
layers) is considered in assignment 3.
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Propagation of Seismic Waves in Inhomogeneous Media

Reflection and Refraction

Simplest case: two homogeneous, isotropic halfspaces with different
properties (λ, µ, ρ) and plane waves in each of them.

Source: Encyclopaedia Britannica

Snell’s law:

sinα1

sinα2
=

v1

v2
(29)
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https://www.britannica.com/science/Snells-law


Propagation of Seismic Waves in Inhomogeneous Media

Reflection and Refraction

Source: Encyclopaedia Britannica
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https://www.britannica.com/science/Snells-law


Propagation of Seismic Waves in Inhomogeneous Media

Reflection and Refraction

Source: University College London
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http://www.ucl.ac.uk/EarthSci/people/lidunka/GEOL2014/Geophysics4 - Seismic waves/SEISMOLOGY .htm


Propagation of Seismic Waves in Inhomogeneous Media

Mathematical Description of Reflection and Refraction

Two homogeneous halfspaces separated by the plane x3 = 0, several
harmonic plane waves in each halfspace.

Upper halfspace (x3 > 0): incident wave (any type), reflected P-wave,
reflected S-wave; parameters ρ1, λ1, and µ1

Lower halfspace (x3 < 0): transmitted (refracted) P-wave, transmitted
(refracted) S-wave; parameters ρ2, λ2, and µ2

Each wave is characterized by an angular frequency ω, a slowness vector ~s
and an amplitude vector ~a.

~u(~x , t) = e iω(t−~s·~x)~a (30)

43 / 139



Propagation of Seismic Waves in Inhomogeneous Media

Mathematical Description of Reflection and Refraction

Conditions at the interface:

(1) Displacement must be continuous:∑
upper halfspace

~u(~x , t)|x3=0 =
∑

lower halfspace

~u(~x , t)|x3=0 (31)

∑
upper halfspace

e iω(t−s1x1−s2x2)~a =
∑

lower halfspace

e iω(t−s1x1−s2x2)~a (32)

ω, s1, s2 must be the same for all 5 involved waves, and∑
upper halfspace

~a =
∑

lower halfspace

~a (33)
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Propagation of Seismic Waves in Inhomogeneous Media

Mathematical Description of Reflection and Refraction

s1, s2 = horizontal components of ~s with regard to the interface

s3 = vertical component of ~s with regard to the interface

s1, s2 are the same for all involved waves.

General form of Snell’s law:

Horizontal slowness remains constant in reflection and refraction.

Horizontal velocity is not constant!

Conservation of horizontal slowness is the main reason why slowness
is preferred to veloctiy in seismology.
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Propagation of Seismic Waves in Inhomogeneous Media

Mathematical Description of Reflection and Refraction

Second condition at the interface:

(2) Stress vector acting on the interface, given by

~σint = σ

(
0
0
1

)
= − iω e iω(t−s1x1−s2x2)

(
µs3a1 + µs1a3

µs3a2 + µs2a3

λ (s1a1 + s2a2 + s3a3) + 2µs3a3

)
(34)

must be continuous,∑
upper halfspace

~σint|x3=0 =
∑

lower halfspace

~σint|x3=0 (35)

The entire stress tensor σ is not necessarily constant!

(1) + (2) linear equation system for the amplitude vectors ~a of the
five involved waves.
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Propagation of Seismic Waves in Inhomogeneous Media

Conversion of Waves in Reflection and Refraction

Align the coordinate system in such a way that all waves propagate in the
x1-x3 plane (s2 = 0, possible because s1 and s2 are the same for all
involved waves).

Vertically polarized S-wave (SV-wave):

a2 = 0 particle displacement in the x1-x3 plane (and normal to
wave propagation)

Converted to (and from) P and SV waves in reflection and refraction

Horizontally polarized S-wave (SH-wave):

a1 = a3 = 0 particle displacement in x2 direction

Independent of P and SV waves
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Propagation of Seismic Waves in Inhomogeneous Media

Conversion of Waves in Reflection and Refraction

Incident P-wave Incident SH-wave Incident SV-wave
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http://hergarten.at/extra/incp.pdf
http://hergarten.at/extra/incs.pdf
http://hergarten.at/extra/incs.pdf


Propagation of Seismic Waves in Inhomogeneous Media

Wave Propagation in an Almost Homogeneous Medium

No reflection and no conversion of P- and S-waves.

Ray path can be computed from the condition that the horizontal
slowness is constant.

Alternatively: Approximate the continuous change in the velocity by
many small discrete steps.

Result: Continuous refraction towards regions of lower velocity.
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Propagation of Seismic Waves in Inhomogeneous Media

Wave Propagation in an Almost Homogeneous Medium

Example: velocity continuously increasing width depth

Source: Shearer, Introduction to Seismology
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Propagation of Seismic Waves in Inhomogeneous Media

Global Wave Propagation in the Earth’s Interior

Source: Shearer, Introduction to Seismology
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Propagation of Seismic Waves in Inhomogeneous Media

Travel Time Curves

Source: Southern Arizona Seismic Observatory

52 / 139

http://www.geo.arizona.edu/saso/


Propagation of Seismic Waves in Inhomogeneous Media

Localization of Earthquakes
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Interface Waves and Surface Waves

The Waves Disappearing in Reflection and Refraction

For all waves involved in refection and refraction at a planar interface
(s2 = 0): s1 given and

|~s|2 = s2
1 + s2

3 =

{
1
v2
p

= ρ
λ+2µ P-waves

1
v2
s

= ρ
µ

for
S-waves

(36)

given.

s3 = ±
√
|~s|2 − s2

1 = ± i
√

s2
1 − |~s|2 if s1 > |~s| (37)

Introduce the aspect ratio

S =

∣∣∣∣s3

s1

∣∣∣∣ =

√
1− |

~s|2
s2

1

(38)
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Interface Waves and Surface Waves

Harmonic Interface Waves

For a harmonic wave:

~u(~x , t) = e iω(t−~s·~x)~a = e iω(t−s1x1∓is1Sx3)~a (39)

= e iω(t−s1x1) e±ωs1Sx3 ~a = e iω(t−s1x1)~aeff (40)

Can be considered as a wave propagating along the interface (here in x1

direction) with an amplitude depending on x3:

~aeff = e±ωs1Sx3 ~a (41)

Only the version where ~aeff decreases exponentially with distance from the
interface (|x3|) makes sense:

~aeff = e−ωs1S |x3|~a (42)

Respective waves are called interface waves.
55 / 139



Interface Waves and Surface Waves

The Depth of Penetration of Interface Waves

~aeff = e−ωs1S |x3|~a = e−
|x3|
d ~a (43)

with the depth of penetration

d =
1

ωs1S
=

L

2πS
(44)

and the wavelength L = 2π
ωs1

.

d →∞ (plane wave propagating along the surface) if the wave is
only slightly too slow for the medium (s1 → |~s|).

d → L
2π if the wave is much too slow for the medium (s1 � |~s|).
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Interface Waves and Surface Waves

Particle Orbits of Interface Waves

Examples of particle orbits for an incident SV wave at the crust-mantle
boundary: α = 20◦, α = 30◦, α = 40◦, α = 70◦

Particles move on elliptical orbits.

Prograde rotation in the lower halfspace; retrograde rotation in the
upper halfspace.
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http://hergarten.at/extra/orbits20.pdf
http://hergarten.at/extra/orbits30.pdf
http://hergarten.at/extra/orbits40.pdf
http://hergarten.at/extra/orbits70.pdf


Interface Waves and Surface Waves

Particle Orbits of Interface Waves

For the P-wave, ~a must be parallel to ~s:

~a ∝ ~s =

(
s1

0
iSs1

)
∝
(

1
0
iS

)
(45)

(only in the lower halfspace, −i in the upper halfspace)

~u(~0, t) = e iωt ~a ∝ e iωt
(

1
0
iS

)
(46)

∝
(

cos(ωt)
0

−S sin(ωt)

)
+ i

(
sin(ωt)

0
S cos(ωt)

)
(47)

Vertical ellipses with aspect ratio 1
S ; circles for S → 1 (s1 � |~s|).

Prograde rotation (retrograde in the upper halfspace)
58 / 139



Interface Waves and Surface Waves

Particle Orbits of Interface Waves

For the SV-wave, ~a must be normal to ~s:

~a ∝
( −iSs1

0
s1

)
∝

(
1
0
i
S

)
(48)

~u(~0, t) = e iωt ~a ∝ e iωt

(
1
0
i
S

)
(49)

∝

(
cos(ωt)

0
− 1

S
sin(ωt)

)
+ i

(
sin(ωt)

0
1
S

cos(ωt)

)
(50)

Vertical ellipses with aspect ratio 1
S ; circles for S → 1 (s1 � |~s|).

Prograde rotation (retrograde in the upper halfspace)
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Interface Waves and Surface Waves

Surface Waves at a Free Surface

Interface waves: driven by plane waves (incident, reflected, refracted)

Surface waves: living on their own at a free surface (interface to air)

Two fundamental types of surface waves in a semi-infinite halfspace:

Rayleigh wave, named after J. W. Strutt (later 3. Lord Rayleigh)

Love wave, named after A. E. H. Love
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Interface Waves and Surface Waves

The Love Wave

Source: L. Braile, Purdue University

SH interface wave; not possible in a homogeneous halfspace because
~σint 6= ~0 for a2 6= 0 (Eq. 34)
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http://web.ics.purdue.edu/~braile/edumod/waves/Lwave.htm
http://web.ics.purdue.edu/~braile/edumod/waves/WaveDemo.htm


Interface Waves and Surface Waves

The Rayleigh Wave

Source: L. Braile, Purdue University

Specific superposition of P and SH interface wave
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http://web.ics.purdue.edu/~braile/edumod/waves/Rwave.htm
http://web.ics.purdue.edu/~braile/edumod/waves/WaveDemo.htm
http://hergarten.at/extra/orbitsrw.pdf


Interface Waves and Surface Waves

The Rayleigh Wave in a Homogeneous Poisson Solid (λ = µ)
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http://hergarten.at/extra/rayleighwave.pdf


Interface Waves and Surface Waves

The Rayleigh Wave in a Homogeneous Poisson Solid (λ = µ)

Retrograde particle motion on elliptical orbits at the surface.

Prograde particle motion on elliptical orbits at greater depth.

Velocity v ≈ 0.92 vs .
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Interface Waves and Surface Waves

The Rayleigh Wave in a Homogeneous Poisson Solid (λ = µ)
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Interface Waves and Surface Waves

The Rayleigh Wave in a Homogeneous Halfspace
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Interface Waves and Surface Waves

Surface Waves in Inhomogeneous Media

Assume that ρ, λ, and µ depend on the vertical coordinate x3, and
generalize

~u(~x , t) = e iω(t−s1x1)

(
ek1Spx3ap

(
1
0
iSp

)
+ ek1Ssx3as

(
1
0
i
Ss

))
(51)

to

~u(~x , t) = e iω(t−s1x1)~a(x3) (52)

Differential equations (eigenvalue problem) for a1(x3), a2(x3), a3(x3).

a1(x3) and a3(x3) are coupled ( Rayleigh wave), a2(x3) is
independent of a1(x3) and a3(x3) ( Love wave).

Must be solved numerically.
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Interface Waves and Surface Waves

Rayleigh Waves in Typical Continental Subsurface (PEM)
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Interface Waves and Surface Waves

Rayleigh Waves in Typical Continental Subsurface (PEM)
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Interface Waves and Surface Waves

Love Waves in Typical Continental Subsurface (PEM)
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Interface Waves and Surface Waves

Love Waves in Typical Continental Subsurface (PEM)
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Interface Waves and Surface Waves

Main Differences Between Body Waves and Surface Waves

Decrease with the distance from the hypocenter/epicenter r :

Energy flux density Amplitude

body waves ∝ 1
r2 ∝ 1

r

surface waves ∝ 1
r ∝ 1√

r

Surface waves have a longer range than body waves.

Velocity of harmonic surface waves depends on the wavelength
(dispersion).
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Interface Waves and Surface Waves

Dispersion

Simplest situation: superposition of two harmonic waves with the same
amplitude (= 1), but different frequencies in 1D:

u(x , t) = e iω1(t−s1x) + e iω2(t−s2x) = e i(ω1t−k1x) + e i(ω2t−k2x) (53)

with k1 = ω1s1, k2 = ω2s2.

Example: k1 = 10, k2 = 11

0 50 100 150 200
−2

−1

0

1

2

x

u
(x

,0
)
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Interface Waves and Surface Waves

Dispersion

u(x , t) = e iω1(t−s1x) + e iω2(t−s2x) = e i(ω1t−k1x) + e i(ω2t−k2x) (54)

= e
i
(
ωt+

ω1−ω2
2

t−kx− k1−k2
2

x
)

+ e
i
(
ωt−ω1−ω2

2
t−kx+

k1−k2
2

x
)

(55)

= e i(ωt−kx)
(
e
i
(
ω1−ω2

2
t− k1−k2

2
x
)

+ e
i
(
−ω1−ω2

2
t+

k1−k2
2

x
))

(56)

= e i(ωt−kx)2 cos
(
ω1−ω2

2 t − k1−k2
2 x

)
(57)

= e
iω

(
t− k

ω
x
)

2 cos
(
ω1−ω2

2

(
t − k1−k2

ω1−ω2
x
))

(58)

with ω = ω1+ω2
2 , k = k1+k2

2 .
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Interface Waves and Surface Waves

Dispersion

For ω1 ≈ ω2, k1 ≈ k2:

High-frequency oscillation with an angular frequency ω propagating

with the phase slowness sph = k
ω

Low-frequency oscillation of the amplitude with an angular frequency
ω1−ω2

2 propagating with the group slowness

sgr =
k1 − k2

ω1 − ω2
→ dk

dω
for ω1 − ω2 → 0 (59)
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Interface Waves and Surface Waves

Velocities of Surface Waves in Typical Continental Subsurface (PEM)
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Interface Waves and Surface Waves

Velocities of Surface Waves in Typical Continental Subsurface (PEM)

1 2 5 10 20 50 100 200
2.5

3

3.5

4

4.5

5

Period [s]

V
e

lo
c
it
y
 [

k
m

/s
]

 

 

v
ph

, Love wave

v
gr

, Love wave

v
ph

, Rayleigh wave

v
gr

, Rayleigh wave

77 / 139



Interface Waves and Surface Waves

Dispersion of Rayleigh Waves in Typical Continental Subsurface

Consider wave propagation in 1D with a Gaussian peak

u(0, t) = e−
t2

2σ2 (60)

as a source (x = 0); alternatively

u(x , 0) = e−
(sx)2

2σ2 (61)

as an initial condition.
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Interface Waves and Surface Waves

Dispersion of Rayleigh Waves in Typical Continental Subsurface

Example 1: short pulse; σ = 1 s
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Interface Waves and Surface Waves

Dispersion of Rayleigh Waves in Typical Continental Subsurface

Example 2: longer pulse; σ = 5 s
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Interface Waves and Surface Waves

Dispersion of Rayleigh Waves in Typical Continental Subsurface
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Interface Waves and Surface Waves

Dispersion of Rayleigh Waves in Typical Continental Subsurface
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Interface Waves and Surface Waves

Dispersion of Rayleigh Waves in Typical Continental Subsurface
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Earthquake Source Theory

The Point-Force Solution

Infinite, homogeneous medium with parameters ρ, λ, and µ (like
plane wave consideration).

Assume that a given force ~F (t) acts at the origin (~x = ~0).

Respective solution of the Navier-Cauchy equations:

~uf(~x , t) =
s2
p

4πρr
P~F (t − spr) +

s2
s

4πρr
(1− P) ~F (t − ssr) (62)

+
1

4πρr3
(3P− 1)

∫ ss r

spr
τ~F (t − τ)dτ (63)

where

r = |~x |

P = ~e ~eT = projection on radial direction, ~e =
~x

r 84 / 139



Earthquake Source Theory

The Point-Force Solution

Spatial pattern of the first term,

P~F ,

for

~F =

 0
0
1


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Earthquake Source Theory

The Point-Force Solution

Spatial pattern of the second
term,

(1− P) ~F ,

for

~F =

 0
0
1


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Earthquake Source Theory

The Point-Force Solution

Spatial pattern of the third term,

(3P− 1) ~F , (64)

for

~F =

 0
0
1



87 / 139



Earthquake Source Theory

Force Couples

Solution for a single point force causes an overall displacement in direction
of the force.

not possible

Consider a couple of opposite forces ~F and −~F displaced by a small vector
~a (at ~a

2 and −~a2 ).

~u(~x , t) = ~uf(~x − ~a
2 , t)− ~uf(~x + ~a

2 , t) (65)
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Earthquake Source Theory

The Seismic Moment Tensor

Approximation in the limit ~a→ ~0:

~u(~x , t) ≈ −∇~uf(~x , t)~a (66)

= −div
(
~uf(~x , t)~aT

)
(67)

= −div

(
s2
p

4πρr
PM(t − spr) +

s2
s

4πρr
(1− P)M(t − ssr)

+
1

4πρr3
(3P− 1)

∫ ss r

spr
τM(t − τ)dτ

)
(68)

with the seismic moment tensor (centroid moment tensor, CMT)

M(t) = ~F (t)~aT [Nm] (69)

89 / 139



Earthquake Source Theory

Components of the Seismic Moment Tensor

Source: Shearer, Introduction to Seismology
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Earthquake Source Theory

Symmetry of the Seismic Moment Tensor

Nondiagonal components of M cause an overall rotation.

not possible

M must be symmetric: Mji = Mij .
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Earthquake Source Theory

Far-Field Waves

~u(~x , t) = −div

(
s2
p

4πρr
PM(t − spr) +

s2
s

4πρr
(1− P)M(t − ssr)

+
1

4πρr3
(3P− 1)

∫ ss r

spr
τM(t − τ)dτ

)
(70)

contains terms proportional to 1
r , 1

r2 , 1
r3 , . . .

Terms proportional to 1
r dominate at great distances.
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Earthquake Source Theory

Far-Field Waves

Consider only terms proportional to 1
r :

~u(~x , t) ≈ −
s2
p

4πρr
P div (M(t − spr))− s2

s

4πρr
(1− P) div (M(t − ssr))(71)

=
s3
p

4πρr
PṀ(t − spr)~e

↑
P-wave

+
s3
s

4πρr
(1− P) Ṁ(t − ssr)~e

↑
S-wave

(72)

with

Ṁ(t) =
d

dt
M(t) (73)
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Earthquake Source Theory

Far-Field Waves

P-wave radiation pattern

PṀ~e

for

Ṁ =

 0 0 0
0 0 0
0 0 1


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Earthquake Source Theory

Far-Field Waves

S-wave radiation pattern

(1− P) Ṁ~e

for

Ṁ =

 0 0 0
0 0 0
0 0 1


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Earthquake Source Theory

Far-Field Waves

P-wave radiation pattern

PṀ~e

for

Ṁ =

 0 0 0
0 0 0
1 0 0


(not allowed!)

96 / 139



Earthquake Source Theory

Far-Field Waves

S-wave radiation pattern

(1− P) Ṁ~e

for

Ṁ =

 0 0 0
0 0 0
1 0 0


(not allowed!)
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Earthquake Source Theory

Far-Field Waves

P-wave radiation pattern

PṀ~e

for

Ṁ =

 0 0 1
0 0 0
1 0 0


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Earthquake Source Theory

Far-Field Waves

S-wave radiation pattern

(1− P) Ṁ~e

for

Ṁ =

 0 0 1
0 0 0
1 0 0


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Earthquake Source Theory

Far-Field Waves

P-wave radiation pattern

PṀ~e

for

Ṁ =

 −1 0 0
0 0 0
0 0 1


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Earthquake Source Theory

Far-Field Waves

S-wave radiation pattern

(1− P) Ṁ~e

for

Ṁ =

 −1 0 0
0 0 0
0 0 1



101 / 139



Earthquake Source Theory

The Scalar Seismic Moment

If

M =

 0 0 M0

0 0 0
M0 0 0

 or M =

 −M0 0 0
0 0 0
0 0 M0

 (74)

(or similar), M0 is called (scalar) seismic moment.

In general:

M0 =
M1 −M3

2
(75)

where M1, M2, and M3 are the eigenvalues of M in descending order.
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Earthquake Source Theory

The Scalar Seismic Moment

Alternative interpretation of the seismic moment:

M0 = µAu (76)

where

A = size of the rupture area [m2]

u = mean displacement along the rupture area [m]
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Earthquake Source Theory

Amplitudes of Body Waves

P-wave displacement at large distances:

~up(~x , t) =
s3
p

4πρr
PṀ(t − spr)~e (77)

Maximum displacement occurs in the directions of the first and third
principal axes of Ṁ:

|~up|max =
s3
p

4πρr
|Ṁ0|max (78)
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Earthquake Source Theory

Amplitudes of Body Waves

S-wave displacement at large distances:

~us(~x , t) =
s3
s

4πρr
(1− P) Ṁ(t − ssr)~e (79)

Maximum displacement occurs in the directions 45◦ between the first and
third principal axis of Ṁ:

|~us |max =
s3
s

4πρr
|Ṁ0|max (80)

|~us |max

|~up|max
=

s3
s

s3
p

=

(
vp
vs

)3

≈ 5 (81)
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Earthquake Source Theory

Seismic Moment vs. Moment Rate for the Alaska 1964 Earthquake
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Earthquake Source Theory

The Seismic Moment Tensor for a Double Force Couple

Definition of strike φ, dip δ, and rake λ according to Aki and Richards
(1980)

Source: Toda et al., Coulomb 3.3 User Guide
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http://pubs.usgs.gov/of/2011/1060/


Earthquake Source Theory

The Seismic Moment Tensor for a Double Force Couple

Step 1: Start with a force couple in x2 direction displaced in x3 direction:

~F =

 0
F
0

 , ~a =

 0
0
a

 (82)

Step 2: Rotate ~F and ~a counterclockwise by the rake angle λ in the x1-x2

plane:

~Fλ = Rλ~F , ~aλ = Rλ~a = ~a (83)

with

Rλ =

 cosλ − sinλ 0
sinλ cosλ 0

0 0 1

 (84)
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http://hergarten.at/extra/rakedipstrike.pdf
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Earthquake Source Theory

The Seismic Moment Tensor for a Double Force Couple

Step 3: Rotate ~Fλ and ~aλ clockwise by the dip angle δ in the x1-x3 plane:

~Fλδ = Rδ~Fλ = RδRλ~F , ~aλδ = Rδ~aλ = RδRλ~a (85)

with

Rδ =

 cos δ 0 sin δ
0 1 0

− sin δ 0 cosδ

 (86)
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Earthquake Source Theory

The Seismic Moment Tensor for a Double Force Couple

Step 4: Rotate ~Fλδ and ~aλδ clockwise by the strike angle φ in the x1-x2

plane:

~Fλδφ = Rφ~Fλδ = RφRδRλ~F , ~aλδφ = Rφ~aλδ = RφRδRλ~a (87)

with

Rφ =

 cosφ sinφ 0
− sinφ cosφ 0

0 0 1

 (88)

~Fλδφ = R~F , ~aλδφ = R~a with R = RφRδRλ (89)
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Earthquake Source Theory

The Seismic Moment Tensor for a Double Force Couple

M = ~Fλδφ~a
T
λδφ +~aλδφ ~F

T
λδφ =

(
R~F
)

(R~a)T + (R~a)
(
R~F
)T

(90)

= R
(
~F~aT +~a~FT

)
RT (91)

= R

( 0
F
0

)(
0
0
a

)T

+

(
0
0
a

)(
0
F
0

)T
RT (92)

= M0 R

 0 0 0
0 0 1
0 1 0

RT (93)

with M0 = Fa
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Earthquake Source Theory

Beachball Plots

Source: Earthquake-Report.com
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http://earthquake-report.com/2014/05/17/understanding-the-mystery-of-earthquake-beach-balls/


Earthquake Source Theory

Beachball Plots

Basic assumption: Ṁ(t) has the same shape as M(t),

M(t) = f (t)M, Ṁ(t) = ḟ (t)M (94)

where M is the total seismic moment, and f (t) increases from 0 to 1.

P-wave radiation pattern:

~u ∝ PM~e = ((M~e) · ~e)~e (95)

P-wave arrives with compression first if (M~e) · ~e > 0 and with dilatation if
(M~e) · ~e < 0.
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Earthquake Source Theory

Beachball Plots

Directions where the
P-wave arrives first with
compression ((M~e) · ~e > 0)
are colored.

Directions where the
P-wave arrives first with
dilatation (M~e) · ~e < 0 are
left white.

Projection of the lower half
of the sphere is plotted
(sometimes stereographic
projection, but mostly
equal-area projection).

Source: US Geological Survey
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http://quake.usgs.gov/


Earthquake Source Theory

Beachball Plots

If the eigenvalues of M are M0, 0, and −M0, the sphere consists of 4 equal
quadrants.

Examples of beachball plots:

normal fault (λ = −90◦) for different dip angles δ

reverse fault (λ = 90◦) for different dip angles δ

transform fault (λ = 0◦) for different dip angles δ

fault dipping at δ = 45◦ for different rake angles λ

fault dipping at δ = 45◦ for different rake angles λ with additional
isotropic expansion
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http://hergarten.at/extra/bbnormal.pdf
http://hergarten.at/extra/bbreverse.pdf
http://hergarten.at/extra/bbtransform.pdf
http://hergarten.at/extra/bbrake.pdf
http://hergarten.at/extra/bbexpansion.pdf
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Earthquake Magnitude

Intensity and Magnitude

Intensity describes the severity of an earthquake in terms of its effects on
the Earth’s surface and on humans and their structures.

Usually written as a Roman numeral.
Goes back to a 12 level scale (originally 10) from I (not felt) to
XII (total destruction) named after G. Mercalli (1850–1914).
Several extensions / refinements: MCS (Mercalli-Cancani-Sieberg)
scale, MWN (Mercalli-Wood-Neumann) scale, MSK scale
(Medvedev, Sponheuer & Karnik, 1964), EMS-98 scale
(European Macroseismic Scale, 2000).

Magnitude characterizes the size of an earthquake using measured values.

Usually written as an Arabic numeral with one decimal digit.
Several different magnitude definitions.
Logarithmic scale.
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Earthquake Magnitude

Example of an Isoseismal Map of Earthquake Intensity

Source: USGS
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http://earthquake.usgs.gov/learn/glossary/?term=isoseismal (line)


Earthquake Magnitude

General Definition of Earthquake Magnitude

If X is any physically measured property of an earthquake, e. g.

total seismic moment M0 or

maximum ground displacement |~u|max,

the corresponding earthquake magnitude is defined by

MX = e log10

(
X

X0

)
(96)

where

X0 = measured value for an earthquake of MX = 0 under the same
conditions

e = factor used for making different magnitude definitions consis-
tent (mostly e = 1)
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Earthquake Magnitude

General Definition of Earthquake Magnitude

If X is a property related to any point different from the earthquake focus,
X0 is a function of distance ∆ and depth h (and other properties).

MX = e log10

(
X

X0(∆, h)

)
= e log10 X + σ(∆, h) (97)

with the distance-depth correction function

σ(∆, h) = − e log10 X0(∆, h) (98)

This only makes sense if the distance-depth dependence of X is
independent of X itself.
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Earthquake Magnitude

Upper und Lower Limits of Magnitude Scales

All magnitude scales are from their definition open and both ends.

Upper limits on Earth are introduced by geological constraints and by
the process of wave propagation.

Negative magnitudes are possible. The definition of zero magnitude is
arbitrary and corresponds to what was detectable when the first
magnitude definition (C. F. Richter, 1935) was introduced.

120 / 139



Earthquake Magnitude

The Local Magnitude (Richter Scale)

Introduced by C. F.
Richter in 1935.

Symbol: ML or ML

X is the maximum
amplitude A of a
specific device, the
Wood-Anderson
seismometer.

Source: Southern California Earthquake Data Center 121 / 139

http://www.data.scec.org/Module/s3inset3.html


Earthquake Magnitude

The Wood-Anderson Seismometer

Oscillation by torsion of a wire

Electromagnetic damping

Natural period of ≈ 0.8 s (frequency f0 = 1.25 Hz); close to the
natural period of many building structures.

Relevant for earthquake hazard.

Maximum magnification (record vs. ground displacelemt) of ≈ 2080
at f0; sometimes a wrong value of 2800 was assumed.

Local magnitudes derived from synthesized seismograms were too
high for some time.
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Earthquake Magnitude

The Wood-Anderson Seismometer

Source: C. J. Ammon, Pennsylvania State University

123 / 139

http://eqseis.geosc.psu.edu/~cammon/HTML/Classes/IntroQuakes/Notes/earthquake_size.html


Earthquake Magnitude

The Local Magnitude (Richter Scale)

The local magnitude was originally defined as

ML = log10 A (99)

where the maximum amplitude A of the Wood-Anderson seismometer
is measured in µm at 100 km distance from the epicenter.

e = 1 1 unit increase in magnitude corresponds to an increase in
the instrument’s amplitude by a factor 10.

Originally only a distance correction σ(∆) = − log10 A0(∆) for
shallow earthquakes (h ≤ 15 km) in California was provided.
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Earthquake Magnitude

Richter’s Original Distance Correction

Source: C. J. Ammon, Pennsylvania State University
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Earthquake Magnitude

Distance Corrections for Different Regions and Depths

Source: Bormann (ed), New Manual of Seismological Observatory Practice
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Intensity and Magnitude

Determining the Local Magnitude of an Earthquake
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Earthquake Magnitude

The Surface-Wave Magnitude

Symbol: MS or MS

Original definition by B. Gutenberg (1945):

MS = log10 uh max + σ(∆) (100)

where uh max is the maximum horizontal ground displacement at
periods from T = 18 s to 22 s.

Widely used modified definition (Moscow-Prague formula, 1962):

MS = max

{
log10

|~u|
T

}
+ 1.66 log10 ∆ + 3.3 (101)

for 2◦ ≤ ∆ ≤ 160◦. The maximum is taken over all periods of surface
waves.
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Earthquake Magnitude

Body-Wave Magnitudes

Two significantly different definitions

Symbols: mB , mB, mb, mb,

Original definition by B. Gutenberg (1945):

mB = max

{
log10

|~u|
T

}
+ σ(∆) (102)

where |~u| is analyzed for different types of body waves separately
(with different functions σ(∆) at periods from T = 0.5 s to 12 s.

Alternative definition (mb, mb) refers to higher-frequency
components of P-waves only.
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Earthquake Magnitude

Scaling Properties of Earthquakes

Alternative interpretation of the seismic moment:

M0 = µAu (103)

where

A = size of the rupture area [m2]

u = mean displacement along the rupture area [m]

Result from the theory of crack propagation:

u ∼
√
A (104)

u ∼ M
1
3

0 , A ∼ M
2
3

0 (105)
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Earthquake Magnitude

Scaling Properties of Earthquakes

Rupture propagates along the rupture area at a given velocity

Duration τ ∼
√
A ∼ M

1
3

0 (106)

|~u| ∼ Ṁ0 ∼
M0

τ
∼ M

2
3

0 (107)

Magnitude definition based on M0 requires e = 2
3 .
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Earthquake Magnitude

Scaling Properties of Earthquakes

Source: Bormann (ed), New Manual of Seismological Observatory Practice
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Earthquake Magnitude

The Moment Magnitude

MW = 2
3 log10 M0 − 6.1 (108)

with M0 in Nm

Introduced in 1977 by H. Kanamori.

More closely related to the strength of earthquakes at the seismic
focus than to the radiated waves.

Rather a tectonic than a seismological magnitude scale.
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Earthquake Magnitude

The Energy Magnitude

A crude scaling relation: particle velocity

|~v | ∼ |
~u|
τ
∼

M
2
3

0

τ
∼ M

1
3

0 (109)

Total radiated kinetic energy

Ekin ∼ |~v |2τ ∼ M0 (110)

Potential energy equals kinetic energy in the mean.

Total radiated seismic energy

E ∼ M0 (111)
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Earthquake Magnitude

The Energy Magnitude

Theoretical relationship suggested by H. Kanamori (1977):

E ≈ 5× 10−5M0 (112)

Corresponding definition of the energy magnitude:

ME = 2
3 log10

E

5× 10−5
− 6.1 = 2

3 log10 E − 3.2 (113)

Up to one order of magnitude deviation from Kanamori’s relationship was
found for indivudual earthquakes.

Significant differences between ME and MW for individual earthquakes.
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Earthquake Magnitude

Saturation of Magnitudes

All magnitude definitions based on ground displacement (ML, MS , . . . )
focus on a limited frequency / period range.

Relationship |~u| ∼ M
2
3

0 does not always hold.

Simple model for the dependence on frequency f :

|~u| ∼

{
M

2
3

0 f ≤ fc

M
2
3

0
fc
f

for
f > fc

(114)

with the corner frequency fc ∼ M
− 1

3
0 ; fc ≈ 0.05 Hz for MW = 7.
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Earthquake Magnitude

Saturation of Magnitudes
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Earthquake Magnitude

Saturation of Magnitudes
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Earthquake Magnitude

Saturation of Magnitudes

All magnitudes based on recording seismic waves fall below MW for
large earthquakes.

Effect is stronger if short-term (high-freqency) components of the
seismic waves are used.

Source: Bormann (ed), New Manual of Seismological Observatory Practice
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