
Tsunamis

Stefan Hergarten

Institut für Geo- und Umweltnaturwissenschaften
Albert-Ludwigs-Universität Freiburg



Introduction

Main Properties of Tsunamis

Gravitiy waves in oceans with long periods between about 100 s and
10,000 s.

Tsunamis propagate at high velocities in deep water.

Mainly horizontal particle motion involving the entire water column
down to the ocean floor.

Rather small dissipation of energy.

Tsunamis travel over large distances.

Wave height increases with decreasing ocean depth.

Tsunamis may reach large wave heights at the coast.
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Introduction

Basic Terms

Source: Levin & Nosov, Physics of Tsunamis
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Introduction

Main Sources of Tsunamis

Earthquakes (more than 90 % of all tsunamis)

Landslides

Volcanic eruptions

Meteorite impact (rare)
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Introduction

Worldwide Distribution of Tsunami Sources from 2000 B.C. to 2014

Source: Levin & Nosov, Physics of Tsunamis
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Introduction

Worldwide Number of Tsunamis per Decade

Source: Levin & Nosov, Physics of Tsunamis

all tsunamis
intensity ≥ 1
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Introduction

The Tallest Tsunami Known so far: Lituya Bay, 1958

Source: Pararas-Carayannis, The Mega-Tsunami of July 9, 1958 in Lituya Bay, Alaska
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Introduction

The Tallest Tsunamis 2000–2014

Date Location MW Hmax [m] Death toll

11.03.2011 Japan 9.0 56 18,482

24.12.2004 Indonesia, Sumatra 9.1 51 227,899

27.02.2010 Chile 8.8 29 156

29.09.2009 Samoa 8.1 22 192

15.11.2006 Russia, Kuril Islands 8.3 22 0

17.07.2006 Indonesia, South of Java 7.7 21 802

25.10.2010 Indonesia, Sumatra 7.8 17 431
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Intensity and Magnitude

Types of Intensity and Magnitude Scales

Three different types of scales:

Intensity scales characterizing the effect of a tsunami on humans and
their structures (Sieberg-Ambraseys scale, Papadopoulos-Imamura
scale).

Intensity scales based on measurements of wave height at the coast
(Imamura-Iida scale, Soloviev-Imamura scale).

Magnitude scales characterizing the stength of a tsunami inpendent
of distance between source and coast and the shape of the coast
(Abe-Hatori scale, Murty-Loomis scale).
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Intensity and Magnitude

The Sieberg-Ambraseys Scale

Originally introduced by A. H. Sieberg (1927), modified by N. N.
Ambraseys (1962).

Six-point scale from 1 = very light to 6 = disastrous.

The Papadopoulos-Imamura Scale

Introduced by G. A. Papadopoulos and F. Imamura (2001).

12-point scale in analogy to the Mercalli scale for earthquakes from
I = not felt to XII = destructive.
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Intensity and Magnitude

The Imamura-Iida Scale

Introduced by A. Imamura (1942), modified by K. Iida (1956).

Defined as

m = log2 Hmax (1)

where Hmax is the maximum wave height.

Source: Gusiakov, Tsunami Quantification

Originally termed magnitude.
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Intensity and Magnitude

The Soloviev-Imamura Scale

Modification of the Imamura-Iida scale by S. Soloviev (1972).

Defined as

I = 1
2 + log2 Hav (2)

where Hav is the average wave height along the nearest coast.

Source: Gusiakov, Tsunami Quantification

Widely used in many tsunami catalogs.
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Intensity and Magnitude

The Abe-Hatori Scale

Introduced in 1979 by K. Abe.

First attempt ro define a tsunami magnitude taking into account the
distance from the source:

Mt = a log10 Hmax + b log10 ∆ + D (3)

where

Hmax = maximum wave amplitude at the coast

∆ = distance

a, b,D = constants
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Intensity and Magnitude

The Murty-Loomis Scale

Introduced in 1980 by T. S. Murty and H. G. Loomis.

Based on the total potential energy E (in J here, originally in ergs):

ML = 2 (log10 E − 12) (4)

Well- defined and

theoretically a good measure of the strength of a tsunami,

but suffers from the problem of determining the total potential energy.
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Intensity and Magnitude

Tsunami Intensity (Soloviev-Imamura) vs. Earthquake Magnitude

Source: Gusiakov, Pure Appl. Geophys, 2015
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Theory of Ocean Waves Without Fluid Dynamics

Starting Point

Cauchy equations for the displacement ~u(~x , t) including gravity:

ρ
∂2

∂t2
~u = div(σ)− ρg

(
0
0
1

)
(5)

Incompressible and inviscid fluid instead of an elastic medium:

Volumetric strain for small deformation

εv = trace(ε) = div(~u) = 0 (6)

Stress tensor

σ = − p1 (7)

with the fluid pressure p(~x , t)
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Theory of Ocean Waves Without Fluid Dynamics

Starting Point

ρ
∂2

∂t2
~u = −∇p − ρg

(
0
0
1

)
= −∇ (p + ρgx3) (8)

Harmonic Plane Wave

~u(~x , t) = e iω(t−~s·~x)~a = e i(ωt−
~k·~x)~a (9)

where ω = angular frequency [s−1]

~s = slowness vector [ s
m ]

~k = ω~s = wave number vector [m−1]

~a = amplitude vector [m]
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Theory of Ocean Waves Without Fluid Dynamics

Non-Existence of S-Waves

ρ
∂2

∂t2
~u = − ρω2e i(ωt−

~k·~x)~a = −∇ (p + ρgx3) (10)

curl

(
ρ
∂2

∂t2
~u

)
= −ρω2e i(ωt−

~k·~x)
(
−i~k

)
×~a (11)

= −curl (∇ (p + ρgx3)) = 0 (12)

~k ×~a = ~0 (13)

~k and ~a must be parallel; only P-waves are possible.
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Theory of Ocean Waves Without Fluid Dynamics

Solution for a Harmonic Plane Wave

div(~u) = e i(ωt−
~k·~x)

(
−i~k

)
·~a = 0 (14)

k2
1 + k2

2 + k2
3 = 0 (15)

For a wave propagating in x1 direction:

~k =

(
k
0
±ik

)
and ~a =

(
a
0
±ia

)
(16)

~u(~x , t) = e i(ωt−kx1∓ikx3)~a = a e±kx3e i(ωt−kx1)

(
1
0
±i

)
(17)
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Ocean Waves at Infinite Ocean Depth

Solution for a Harmonic Plane Wave

Consider domain x3 ≤ 0 Only solution with ”+” makes sense.

~u(~x , t) = a ekx3e i(ωt−kx1)

(
1
0
i

)
(18)

Prograde particle movement on circular orbits

Depth of penetration

d =
1

k
=

L

2π
(19)

with the wavelength L = 2π
k

21 / 52



Ocean Waves at Infinite Ocean Depth

Velocity of Propagation

For solving Eq. 8 write ρ ∂
2

∂t2~u as

ρ
∂2

∂t2
~u = −ρω2e i(ωt−

~k·~x)~a = − ρω2a

k
e i(ωt−

~k·~x)~k (20)

= ∇
(
− iρω2a

k
e i(ωt−

~k·~x)
)

(21)

∇
(
− iρω2a

k
e i(ωt−

~k·~x) + p + ρgx3

)
= ~0 (22)

− iρω2a

k
e i(ωt−

~k·~x) + p + ρgx3 = const (23)
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Ocean Waves at Infinite Ocean Depth

Velocity of Propagation

Free ocean surface with p = const at x3 = u3(x1, x2, 0)

− iρω2a

k
e i(ωt−kx1) + ρgia e i(ωt−kx1) = const (24)

ω2 = gk (25)
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Ocean Waves at Infinite Ocean Depth

Velocity of Propagation

Phase Velocity:

vph =
ω

k
=

√
g

k
=

√
gL

2π
(26)

Strong dispersion

Group Velocity:

vgr =
dω

dk
=

1

2

√
g

k
=

1

2
vph (27)
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Ocean Waves at Finite Ocean Depth

Boundary Condition at the Ocean Floor

Consider domain −H ≤ x3 ≤ 0 with a given ocean depth H.

Solution must meet the condition u3(x1, x2,−H, t) = 0.

Versions with + and − in Eq. 17 must be superposed:

~u(~x , t) = a+ ekx3e i(ωt−kx1)

(
1
0
i

)
+ a− e

−kx3e i(ωt−kx1)

(
1
0
−i

)
(28)

=
a e i(ωt−kx1)

ekH + e−kH

(
ek(x3+H)

(
1
0
i

)
+ e−k(x3+H)

(
1
0
−i

))
(29)
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Ocean Waves at Finite Ocean Depth

The Hyperbolic Cosine and Sine Functions

cosh(x) =
ex + e−x

2
(30)

sinh(x) =
ex − e−x

2
(31)

−2 −1 0 1 2
−3

−2

−1

0

1

2

3

4

x

f(
x
)

 

 

f(x) = e
x

f(x) = e
−x

f(x) = cosh(x)

f(x) = sinh(x)
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Ocean Waves at Finite Ocean Depth

Particle displacement of a Harmonic Plane Wave

Particle displacement expressed in terms of cosh(x) and sinh(x):

~u(~x , t) =
a e i(ωt−kx1)

cosh(kH)

(
cosh(k(x3 + H))

0
i sinh(k(x3 + H))

)
(32)

Prograde particle movement on elliptical orbits.

Orbits are always wider than high; height-to-width ratio:

S =
sinh(k(x3 + H))

cosh(k(x3 + H))
= tanh(k(x3 + H)) (33)

Horizontal amplitude at the surface = a.
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Ocean Waves at Finite Ocean Depth

Particle displacement of a Harmonic Plane Wave

Wave height (vertical amplitude at the surface):

h = a tanh(kH) (34)

Orbits are almost circular (S → 1) for

k(x3 + H) → ∞ ⇐⇒ x3 + H � L
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Ocean Waves at Finite Ocean Depth

Particle Orbits for L/H = 1
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http://hergarten.at/extra/airydeepwater.pdf


Ocean Waves at Finite Ocean Depth

Particle Orbits for L/H = 5
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http://hergarten.at/extra/airyintermediate.pdf


Ocean Waves at Finite Ocean Depth

Particle Orbits for L/H = 20
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http://hergarten.at/extra/airyshallowwater.pdf


Ocean Waves at Finite Ocean Depth

Maximum Particle Displacment of a Harmonic Plane Wave
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Ocean Waves at Finite Ocean Depth

Maximum Particle Displacment of a Harmonic Plane Wave
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Ocean Waves at Finite Ocean Depth

Velocity of Propagation

ρ
∂2

∂t2
~u = −ρω

2a e i(ωt−kx1)

cosh(kH)

(
cosh(k(x3 + H))

0
i sinh(k(x3 + H))

)
(35)

= ∇
(
− iρω2a

k cosh(kH)
e i(ωt−kx1) cosh(k(x3 + H))

)
(36)

∇
(
− iρω2a

k cosh(kH)
e i(ωt−kx1) cosh(k(x3 + H)) + p + ρgx3

)
= ~0 (37)

− iρω2a

k cosh(kH)
e i(ωt−kx1) cosh(k(x3 + H)) + p + ρgx3 = const (38)
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Ocean Waves at Finite Ocean Depth

Velocity of Propagation

Free ocean surface with p = const at x3 = u3(x1, x2, 0)

− iρω2a

k
e i(ωt−kx1) + ρg

a e i(ωt−kx1)

cosh(kH)
i sinh(kH) = const (39)

ω2 = gk
sinh(kH)

cosh(kH)
= gk tanh(kH) (40)

Phase Velocity:

vph =
ω

k
=

√
g tanh(kH)

k
(41)
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Ocean Waves at Finite Ocean Depth

Velocity of Propagation
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Ocean Waves at Finite Ocean Depth

Velocity of Propagation

Maximum phase velocity (at long wavelengths, kH → 0):

vmax
ph =

√
gH (42)

Group Velocity:

vgr =
dω

dk
=

g

2ω

(
tanh(kH) +

kH

cosh2(kH)

)
=

1

2
vph

(
1 +

kH

sinh(kH) cosh(kH)

)
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Ocean Waves at Finite Ocean Depth

Velocity of Propagation
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Ocean Waves at Finite Ocean Depth

Regimes of Ocean Wave Propagation

Deep water regime: L/H ≤ 2

Particles move on almost circular orbits.

Particle movement is practically limited to a depth less than one
wavelength.

Phase velocity and group velocity depend on the wavelength, but not
on ocean depth:

vph ≈
√

g

k
=

√
gL

2π
, vgr ≈

1

2
vph

Strong dispersion
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Ocean Waves at Finite Ocean Depth

Regimes of Ocean Wave Propagation

Shallow water regime: L/H ≥ 20

Particles move on elliptical orbits.

Horizontal particle movement persists down to the ocean floor.

Phase velocity and group velocity depend only on ocean depth:

vph ≈ vgr ≈
√

gH

No dispersion
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Ocean Waves at Finite Ocean Depth

Dispersion

Examples of tsunami wave dispersion in a 4000 m deep ocean (symmetric
propagation to the left and to the right):

bell-shaped (Gaussian) wave

boxcar-shaped wave

double boxcar-shaped wave

step-like wave
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http://hergarten.at/extra/airydispersion1.pdf
http://hergarten.at/extra/airydispersion2.pdf
http://hergarten.at/extra/airydispersion3.pdf
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Ocean Waves at Finite Ocean Depth

The Fluid Pressure

From Eqs. 38 and 40 with p = 0 at the ocean surface:

p(~x , t) = −ρgx3 +
iρω2a

k cosh(kH)
e i(ωt−kx1) cosh(k(x3 + H)) (43)

= −ρgx3 +
iρg tanh(kH)a

cosh(kH)
e i(ωt−kx1) cosh(k(x3 + H)) (44)

= −ρgx3 + ρgh(x1, x2, t)
cosh(k(x3 + H))

cosh(kH)
(45)

with the wave height

h(x1, x2, t) = u3(x1, x2, 0, t) = a e i(ωt−kx1)i tanh(kH) (46)
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Ocean Waves at Finite Ocean Depth

The Fluid Pressure
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Ocean Waves at Finite Ocean Depth

The Fluid Pressure

Pressure variation at the ocean floor:

p(x1, x2,−H, t)− ρgH =
ρgh(x1, x2, t)

cosh(kH)
(47)

Deep water regime (L/H ≤ 2): < 10 % of the near-surface variation

Shallow water regime (L/H ≥ 20): > 95 % of the near-surface variation

Most important component of tsunami warning systems beyond
earthquake registration.
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Shallow Water Waves

The Shallow Water Approximation

Allows for generalization to

non-harmonic waves and

non-constant ocean depth (refraction, amplification)

in the limit kH → 0.

Approximations:

Vertical particle displacement is negligible and is only used for
maintaining the incompressibility.

Horizontal particle displacement depends on x1 and x2 only.

Hydrostatic vertical pressure profile.

Consider all vectors as a two-component vectors from now on.
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Shallow Water Waves

The Shallow Water Approximation

Mass balance:

ρ
∂

∂t
h(~x , t) = −div

(∫ 0

−H
ρ
∂

∂t
~u(~x , t) dx3

)
(48)

= −div

(
Hρ

∂

∂t
~u(~x , t)

)
(49)
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Shallow Water Waves

The Shallow Water Approximation

Cauchy equations for an inviscid fluid (horizontal component only):

ρ
∂2

∂t2
~u(~x , t) = −∇p(~x , t) (50)

Hydrostatic pressure distribution with free surface:

p(~x , x3, t) = − ρgx3 + ρg h(~x , t) (51)

∂2

∂t2
~u(~x , t) = − g∇h(~x , t) (52)
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Shallow Water Waves

The Shallow Water Approximation

Insert Eq. 52 into the derivative of Eq. 49:

∂2

∂t2
h(~x , t) = −div

(
H
∂2

∂t2
u(~x , t)

)
(53)

= −div (−gH∇h(~x , t)) (54)

= div
(
v2∇h(~x , t)

)
(55)

is a wave equation with the velocity

v =
√
gH (56)

already known for the shallow water regime.
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Shallow Water Waves

Wave Propagation at Non-Constant Water Depth

Reflection and refraction according to Snell’s law, similar to seismic
waves.

Only significant in the shallow water regime.

Small gradual changes in water depth: continuous refraction towards
smaller water depth without significant reflection.

Amplitude?
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Shallow Water Waves

Wave Shoaling

Source: Carpenter, Ocean Waves
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http://slideplayer.com/slide/7778663/


Shallow Water Waves

Wave Shoaling

Modify the approach considered in assignment 3:

h(~x , t) = f (t − ψ(~x)) a(~x) (57)

Wave equation:

∂2

∂t2
h = f ′′a = div

(
v2∇h

)
= div

(
v2∇(fa)

)
= f ′′v2|∇ψ|2a− f ′

(
div
(
v2a∇ψ

)
+ v2∇a · ∇ψ

)
+f div

(
v2∇a

)
(58)

v2|∇ψ|2 = 1 (59)(
div
(
v2a∇ψ

)
+ v2∇a · ∇ψ

)
= 0 (60)

div
(
v2∇a

)
= 0 (61)
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Shallow Water Waves

Wave Shoaling

Define

~q = a2v2∇ψ = a2~v (62)

where ~v = v2∇ψ is the velocity vector in direction of wave propagation.

div(~q) = a div
(
av2∇ψ

)
+∇a ·

(
av2∇ψ

)
(63)

= a
(
div
(
av2∇ψ

)
+∇a · v2∇ψ

)
(64)

= 0 (65)

according to Eq. 60.
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