Seismologie

Stefan Hergarten

Institut für Geo- und Umweltnaturwissenschaften Albert-Ludwigs-Universität Freiburg

Seismologie

- Alles zu Erdbeben und zur Ausbreitung seismischer Wellen.
- Größtes Fachgebiet der Geophysik der festen Erde (Institute, Publikationen).
- Liefert den Großteil der verfügbaren Informationen über das Erdinnere.

Seismik

- Erkundung der oberflächennahen und tiefen Untergrunds mittels künstlich erzeugter seismischer Wellen.
- Größtes Fachgebiet der angewandten Geophysik

Erdbeben als Naturgefahr

Erdbeben als Naturgefahr

Räumliche Verteilung von Erdbeben

Räumliche Verteilung von Erdbeben

Räumliche Verteilung von Erdbeben

Das erste "Seismometer" (132 a.D.)

Geschichte der Seismologie

1660	Grundgesetz der Elastizität	R. Hooke				
1821–22	Differentialgleichungen der elastischen	C. Navier				
	Deformation	A.L. Cauchy				
1830	Theorie der Grundtypen elastischer Wellen	S. D. Poisson				
	(P- und S-Welle)					
1875	erstes "echtes" Seismometer	F. Gecchi				
1887	Theorie des ersten Grundtyps von Ober-	J.W. Strutt (3.				
	flächenwellen	Lord Rayleigh)				
1889	Registrierung eines weit entfernten Erdbebens					
1892	erstes kompaktes Seismometer, an etwa 40	J. Milne				
	Stationen eingesetzt					
1894	statische Gesetzmäßigkeit für Nachbeben	F. Omori				
1903	10-teilige Skala für die Intensität von Erdbe-	G. Mercalli				
	ben auf Basis der Auswirkungen					
		9 / 92				

Geschichte der Seismologie

1906–13	Entdeckung des flüssigen Erdkerns und Be- stimmung seiner Größe	R. D. Oldham, B. Gutenberg
1909	Entdeckung der Kruste-Mantel-Grenze	A. Mohorovičić
1911	Theorie des zweiten Grundtyps von Ober- flächenwellen	A. E. H. Love
1935	Lokalmagnitude als instrumentell bestimm- bares Maß der Erdbebenstärke	C. F. Richter
1936	Entdeckung des inneren, festen Erdkerns	I. Lehmann
1954	Häufigkeitsverteilung von Erdbeben (An- zahl vs. Magnitude)	B. Gutenberg, C.F. Richter
1975	erfolgreiche Kurzzeit-Vorhersage eines starken Erdbebens	
1977	Momenten-Magnitude zur Charakterisie- rung starker Erdbeben	H. Kanamori

Seismische Wellen

- Räumlich und zeitliche veränderliche elastische Deformation eines festen Mediums
- Kann auch als Ausbreitung von Schallwellen in Festkörpen angesehen werden.
- Komplizierter als die Ausbreitung von Schallwellen in Flüssigkeiten und Gasen.

Hooke's Gesetz

Einfachste Form: Deformation ϵ ist proportional zur Spannung σ . Gültigkeit: in Gesteinen nur für sehr kleine Deformationen $\epsilon \lesssim 10^{-3}$ Allgemeine Form für ein isotropes, elastisches Medium:

$$\sigma = \lambda \operatorname{tr}(\epsilon) \mathbf{1} + 2\mu \epsilon$$

mit

- $\sigma = \text{Spannungstensor (selbstadjungierte Abbildung des } \mathbb{R}^3$ bzw. symmetrische 3 × 3-Matrix)
- ϵ = Verzerrungstensor (Strain Tensor, selbstadjungierte Abbildung des \mathbb{R}^3 bzw. symmetrische 3 × 3-Matrix)
- 1 = Identitätsabbildung des \mathbb{R}^3 bzw. 3 × 3-Einheitsmatrix
- tr = Spur (Summe der Diagonalelemente)
- λ, μ = Lamé-Parameter des Mediums [Pa]

Verschiebungsfeld und Verzerrungstensor

Beschreibe inhomogene Deformation durch Verschiebungsfeld $\vec{u}(\vec{x}, t)$: Teilchen, welches sich zur Zeit 0 (Spannungsfreier Ruhezustand) am Ort \vec{x} befand, befindet sich zur Zeit t am Ort $\vec{x} + \vec{u}(\vec{x}, t)$.

Komponenten des Verzerrungstensors für kleine Deformation:

$$\epsilon_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)$$

Die Navier-Cauchy-Gleichungen

Kombinierie Newtons's Gesetz (Kraft = Masse \times Beschleunigung) mit Hooke's Gesetz.

$$\rho \frac{\partial^2 u_i}{\partial t^2} = \sum_{j=1}^3 \left(\frac{\partial}{\partial x_i} \left(\lambda \frac{\partial u_j}{\partial x_j} \right) + \frac{\partial}{\partial x_j} \left(\mu \left(\frac{\partial u_j}{\partial x_i} + \frac{\partial u_i}{\partial x_j} \right) \right) \right) + \dots$$

- $+\cdots =$ Gravitation, Fluiddruck in porösem Medium, ...
- Navier-Cauchy-Gleichungen bilden die Grundlage der gesamten Gesteins- und Bodenmechanik.
- Meist werden stationäre Lösungen $(\frac{\partial^2 u_i}{\partial t^2} = 0)$ betrachtet.
- Instationäre Lösungen: Ausbreitung seismischer Wellen
- Analytische Lösungen sind nur für wenige Spezialfälle möglich.

Grundtypen seismischer Wellen

Eindimensionale Wellenausbreitung in homogenen Medien

- Verschiebungsfeld u(x, t) statt $\vec{u}(\vec{x}, t)$
- ρ , λ und μ sind konstant.

$$\varphi \frac{\partial^2}{\partial t^2} u(x,t) = (\lambda + 2\mu) \frac{\partial^2}{\partial x^2} u(x,t)$$

Lösung:

$$u(x,t) = f(t-sx)$$

mit

f = beliebige Funktion, welche die Wellenform beschreibt s = $\pm \sqrt{\frac{\rho}{\lambda + 2\mu}}$ = Langsamkeit

Eindimensionale Wellenausbreitung in homogenen Medien

Welle bewegt sich mit der Geschwindigkeit $v = \frac{1}{s}$ nach rechts (also nach links wenn s < 0).

Eindimensionale Wellenausbreitung in homogenen Medien

 $\tau = t - sx$ heißt retardierte Zeit: Was jetzt (t) am Ort x ist, war zur Zeit τ bei x = 0 ($u(x, t) = u(0, \tau)$).

Harmonische Wellen

Spezielle Form der Funktion f:

$$f(\tau) = a \cos(\omega \tau) + b \sin(\omega \tau)$$

oder mit der komplexen Exponentialfunktion

$$f(au) = A e^{i\omega au}$$

liefert eine harmonische Welle mit der Kreisfrequenz ω und der Amplitude $\sqrt{a^2+b^2}$ bzw. |A|.

Harmonische Wellen

Argument der Cosinus-, Sinus- bzw. komplexen Exponentialfunktion lässt sich darstellen als

$$\omega \tau = \omega (t - sx)$$

$$= \omega t - kx \qquad \text{mit} \quad k = \omega s = \text{Wellenzahl} \left[\frac{1}{\text{m}}\right]$$

$$= \omega t - 2\pi \frac{x}{L} \qquad \text{mit} \quad L = \frac{2\pi}{k} = \text{Wellenlänge} [\text{m}]$$

$$= 2\pi \left(\nu t - \frac{x}{L}\right) \qquad \text{mit} \quad \nu = \frac{\omega}{2\pi} = \text{Frequenz} \left[\frac{1}{s}\right]$$

$$= 2\pi \left(\frac{t}{T} - \frac{x}{L}\right) \qquad \text{mit} \quad T = \frac{1}{\nu} = \frac{2\pi}{\omega} = \text{Periode} [\text{s}]$$

Ebene Wellen in 3D

- Beliebige Ausbreitungsrichtung
- $\vec{u}(\vec{x}, t)$ ist konstant auf Ebenen senkrecht zur Ausbreitungsrichtung.

$$\vec{u}(\vec{x},t) = f(t-\vec{s}\cdot\vec{x})\vec{a}$$

mit

- \vec{s} = Vektor der Langsamkeit
- \vec{a} = Amplitudenvektor (konstant)

Die Welle bewegt sich in Richtung von \vec{s} mit der Geschwindigkeit $v = \frac{1}{|\vec{s}|}$.

Ebene Wellen in 3D

Einsetzen in die Navier-Cauchy-Gleichungen für ein homogenes Medium ($\lambda,\,\mu$ konstant),

$$\rho \frac{\partial^2 u_i}{\partial t^2} = \sum_{j=1}^3 \left((\lambda + \mu) \frac{\partial^2 u_j}{\partial x_i \partial x_j} + \mu \frac{\partial^2 u_i}{\partial x_j^2} \right)$$
$$\downarrow$$
$$\rho \vec{a} = (\lambda + \mu) (\vec{a} \cdot \vec{s}) \vec{s} + \mu |\vec{s}|^2 \vec{a}$$

Geht nur, wenn \vec{a} parallel (der entgegengesetzt) zu \vec{s} ist oder senkrecht auf \vec{s} steht ($\vec{a} \cdot \vec{s} = 0$).

Grundtypen seismischer Wellen

Longitudinal polarisierte ebene Wellen

 \vec{a} ist parallel oder entgegengesetzt zu \vec{s} .

22/90

Grundtypen seismischer Wellen

Longitudinal polarisierte ebene Wellen

Quelle: L. Braile, Purdue University

Deformationsmodus: uniaxiale Kompression (ohne Querausdehnung)

Longitudinal polarisierte Welle wird auch als Kompressionswelle bezeichnet.

Transversal polarisierte ebene Wellen

 \vec{a} steht senkrecht auf \vec{s} ($\vec{a} \cdot \vec{s} = 0$)

$$|\vec{s}| = \sqrt{\frac{\rho}{\mu}}, \quad v = \frac{1}{|\vec{s}|} = \sqrt{\frac{\mu}{\rho}}$$

Grundtypen seismischer Wellen

Transversal polarisierte ebene Wellen

Quelle: L. Braile, Purdue University

Deformationsmodus: einfache Scherung

Transversal polarisierte Welle wird auch als Scherwelle bezeichnet.

Vergleich mit Schallwellen in Flüssigkeiten und Gasen

Die Kompressionswelle ist ähnlich zu Schallwellen in Flüssigkeiten, während sich in Flüssigkeiten und Gasen keine Scherwellen ausbreiten können.

Seismische Geschwindigkeiten

Medium	Kompressionswelle $\left[\frac{km}{s}\right]$	Scherwelle $\left[\frac{km}{s}\right]$	
Luft	0.34	-	
Wasser	1.45	-	
Holz	≈ 3	≈ 1.8	
feste Erde*	5.8–13.7	3.4–7.2	

* Parametric Earth Models (PEM), nicht im oberflächennahen Bereich

Kompressionswelle kommt immer früher als die Scherwelle an.

- Kompressionswelle heißt auch Primärwelle oder P-Welle, Geschwindigkeit v_p.
- Scherwelle heißt auch Sekundärwelle oder S-Welle, Geschwindigkeit v_s .

Seismische Geschwindigkeiten

Typische v_p - v_s -Verhältnisse:

Festgestein:

$$\frac{v_p}{v_s} = \sqrt{\frac{\lambda+2\mu}{\mu}} \approx \sqrt{3} \approx 1.7$$

für $\lambda \approx \mu$.

Lockergestein und Böden:

$$\frac{v_p}{v_s} \approx 2.5$$

Grundtypen seismischer Wellen

Seismische Geschwindigkeiten im Erdinneren

Typische P-Wellen-Geschwindigkeiten in der Erdkruste

Medium	$v_p \left[\frac{\mathrm{km}}{\mathrm{s}}\right]$	Medium	$v_p \left[\frac{\mathrm{km}}{\mathrm{s}}\right]$
Verwitterungszone	0.1–0.5	Ton	1.2-2.8
Sand (trocken)	0.3–0.6	Tonstein	2.2–4.2
Sand (wassergesättigt)	1.3–1.8	Kalkstein	3–6
Sandstein	1.8–4	Halit	4.5–6.5
Steinkohle	1.6-1.9	Granit	5–6.5

Reflexion und Brechung

Einfachster Fall: ebene Wellen in zwei homogenen, isotropen Halbräume mit unterschiedlichen Eigenschaften (λ , μ , ρ)

Reflexion und Brechung

Reflexion und Brechung

Reflexion und Brechung

P- und S-Wellen mischen sich bei Reflexion und Brechung.

Jede einfallende Welle erzeugt bis zu 4 reflektierte oder gebrochene Wellen.

Das Brechungsgesetz gilt für jedes Paar beteiligter Wellen.

Die horizontale Langsamkeit

$$s_h = \frac{\sin \alpha}{v} = s \sin \alpha$$

ist für alle beteiligten Wellen dieselbe.

Reflexion und Brechung

Allgemeine Form des Brechungsgesetzes:

Die horizontale Langsamkeit bleibt bei Brechung und Reflexion konstant.

- Die horizontale Geschwindigkeit bleibt nicht konstant!
- Die Erhaltung der horizontalen Langsamkeit ist der Hauptgrund, warum in der Seismologie der Begriff der Langsamkeit gegenüber der Geschwindigkeit bevorzugt wird.
- Die Berechnung der Amplituden ist kompliziert und nicht durch einfache Gesetzmäßigkeiten beschreibbar.

Polarisation von S-Wellen

- Die Richtung der Partikelbewegung ist bei P-Wellen eindeutig durch die Ausbreitungsrichtung festgelegt.
- Bei S-Wellen erfolgt die Partikelbewegung in irgendeiner Richtung senkrecht zur Ausbreitungsrichtung. Speziallfälle:
 - Horizontal polarisiert (SH-Welle): Partikelbewegung in der Ebene der Grenzfläche

Vertikal polarisiert (SV-Welle): Partikelbewegung senkrecht zu der der SH-Welle
FREBURG

Reflexion und Brechung

Die Umwandlung von Wellen und die Amplituden hängen von der Polarisation der beteiligten S-Wellen ab.

- P- und SV-Wellen mischen sich.
- SH-Welle ist unabhängig von P- und SV-Wellen.

Wellenausbreitung bei kontinuierlicher Variation der Geschwindigkeit

- Ausbreitungsrichtung (\vec{s}) ändert sich kontinuierlich.
- Wellenfronten sind nicht mehr parallel.
- Strahlenoptik (mit kontinuierlich gekrümmten Strahlen = Ausbreitungsrichtung) ist anwendbar, wenn die Wellenlänge klein ist.
- Keine Reflexion und keine Umwandlung zwischen P- und S-Wellen.
- Horizontale Langsamkeit bleibt entlang eines Strahls konstant.

Kontinuierliche Brechung in Richtung geringerer Geschwindigkeit

Wellenausbreitung bei kontinuierlicher Variation der Geschwindigkeit

Beispiel: gleichmäßiger Anstieg der Geschwindigkeit mit der Tiefe

P-Wellen bei 10 km Herdtiefe (Oberkruste)

P-Wellen bei 30 km Herdtiefe (Unterkruste)

P-Wellen bei 30 km Herdtiefe (Unterkruste)

P-Wellen bei 30 km Herdtiefe (Unterkruste)

Nomenklatur der verschiedenen Wellen

Laufzeitkurven und Lokalisierung von Erdbeben

Grenzflächenwellen

Brechung und Reflexion an einer ebenen Schichtgrenze:

Alle Wellen haben dieselbe horizontale Langsamkeit s_h wie die einfallende Welle.

Wenn $s_h > s = \frac{1}{v}$:

- Gebrochene oder reflektierte Welle kann sich nicht ins Medium ausbreiten.
- Läuft mit der Geschwindigkeit $\frac{1}{s_h}$ an der Schichtgrenze entlang.
- Amplitude fällt exponentiell mit dem Abstand von der Schichtgrenze ab.
- Welle wird als Grenzflächenwelle bezeichnet.

Grenzflächenwellen

Einfallende SH-Welle: gleiche Partikelbewegung auch bei der SH-Genzflächenwelle

Einfallende P- oder SV-Welle:

- elliptische Partikelbahnen
- prograde Rotation im unteren Halbraum, retrograd im oberen Halbraum

Beispiele für einfallende SV-Welle an der Kruste-Mantel-Grenze: $\alpha=20^\circ$, $\alpha=30^\circ$, $\alpha=40^\circ$, $\alpha=70^\circ$

Grenzflächenwellen vs. Oberflächenwellen

Grenzflächenwellen:

- Durch einfallende (und andere gebrochene und reflektierte) Wellen angetrieben.
- Ausbreitungsgeschwindigkeit passt sich der horizontalen Langsamkeit der einfallenden Welle an.

Oberflächenwellen:

- Eines der beiden Medien fehlt (Luft); freie Oberfläche.
- Keine antreibende Welle.
- Im homogenen Halbraum nur möglich mit spezieller Kombination von P- und SV-Grenzflächenwelle bei bestimmter Geschwindigkeit.

Die Rayleigh-Welle

Benannt nach J.W. Strutt (3. Lord Rayleigh).

Die Rayleigh-Welle

$\left(\right)$	\bigcirc	\bigcirc	(\bigcirc	$\left(\right)$			\bigcirc	$\left(\right)$	\bigcirc	()	()	()	$\left(\right)$		\bigcirc	\bigcirc	\bigcirc	\bigcirc						
Ó	Ĭ	Ĭ	\mathbf{i}	Ĭ	Ĭ	Ĭ	Ĭ	Ì	Ĭ	Ĭ	Ĭ	Ó	Ó	Ĭ	Ĭ	ð	Ĭ	Ĭ	Ĭ	Ĭ	Ì	Ì	Ĭ	Ĭ	Ó
Ī	ļ	ļ	ł	t	İ	Ì	İ	1	+	ļ	ļ	Ì		ļ	ļ	ł	t	Ì	Ì	Ì	Ì	ł	ļ	ļ	I
Û	Q	ļ	ŀ	Ĵ	Ũ	Ū	D	ţ	∮	J	Í		I	Í	ļ	ŀ	¢	Ũ	Ū	D	ţ	∮	J	Í	Û
Q	Q	Ģ	ŀ	Û	Ũ	Ō	D	t	€	∮	Û	Q	Q	Q	Ģ	0	(Ű	Ō	Ō	t	€	J	Û	0
Q	Q	Ģ	0	Û	Ũ	Ō	D	1	€	J	٥	Q	Q	Q	Ģ	0	Ĵ	Ű	Ō	Ō	ť	€	J	Û	Q
Q	Q	Ģ	0	Û	Ũ	Ō	Ũ	0	€	J	٥	Q	Q	Q	Ģ	0	C	Ū	Ō	D	0	€	J	٥	0
Q	Q	6	0	¢	đ	Ū	D	7	•	J	٥	٥	Q	Q	6	0	Ċ	Ū	Ū	0	7	•	Q	٥	0
0	6	6	•	0	Ū	Ū	0	0	4	4	٥	9	9	6	6	0	0	Ū	Ū	0	9	4	4	٥	9
4	٩	٠	٠	•	¢	Û	•	•	•	•	4	8	8	٩	۵	٠	•	,	0	9	9	•	•	•	4
٥	۵	٠	•	•	•	•	•	٩	٠	•	٨	٨	۵	۵	٠	٠	٠	•	•	•	٠	•	•	٨	4

Die Rayleigh-Welle

- Retrograde elliptische Partikelbewegung im oberflächennahen Bereich.
- Ellipsen werden schmaler mit wachsender Tiefe und kehren in einer bestimmten Tiefe ihre Richtung um.
- Prograde elliptische Partikelbewegung im tiefen Bereich.
- Eindringtiefe ist proportional zur Wellenlänge.

Ausbreitungsgeschwindigkeit der Rayleigh-Welle

Die Love-Welle

- Benannt nach A. E. H. Love.
- Identisch mit SH-Grenzflächenwelle.
- Nur möglich, wenn v_s mit der Tiefe zunimmt.

Quelle: L. Braile, Purdue University

Ausbreitungsgeschwindigkeit von Oberflächenwellen (kontinental)

Dispersion

Ausbreitungsgeschwindigkeit hängt von der Frequenz ab.

$Wellenpakete \ laufen \ auseinander = Dispersion$

Dispersion von Rayleigh-Wellen

t = 300 s

Dispersion von Rayleigh-Wellen

Dispersion von Rayleigh-Wellen

Dispersion von Rayleigh-Wellen

Dispersion von Rayleigh-Wellen

• Langsame Schwingungen (lange Wellenlängen) kommen zuerst an.

Schwingung an einem festen Ort wird mit der Zeit schneller.

- Größte Verschiebung des Untergrunds bei sehr langsamen Schwingungen.
- Größte Beschleunigung des Untergrunds gegen Ende des Wellenzugs im Periodenbereich von ca. 20 s.

Verschiebungsfeld einer einzelnen Kraft

Annahmen:

- Homogenes Medium mit Parametern $\rho,\,\lambda$ und μ (wie bei der ebenen Welle).
- Zeitabhängige Kraft $\vec{F}(t)$ wirkt im Koordinatenursprung $(\vec{x} = \vec{0})$.

Entsprechende Lösung der Navier-Cauchy-Gleichungen:

$$\vec{u}(\vec{x},t) = \frac{s_{\rho}^{2}}{4\pi\rho|\vec{x}|}\vec{F}_{\text{radial}}(t-s_{\rho}|\vec{x}|) + \frac{s_{s}^{2}}{4\pi\rho|\vec{x}|}\vec{F}_{\text{tangential}}(t-s_{s}|\vec{x}|) \\ + \frac{1}{4\pi\rho|\vec{x}|^{3}}\int_{s_{\rho}|\vec{x}|}^{s_{s}|\vec{x}|}\tau\vec{F}_{\text{Dipol}}(t-\tau)d\tau$$

Verschiebungsfeld einer einzelnen Kraft

Verschiebungsmuster des 1. Terms,

$$ec{F}_{\mathsf{radial}} = \left(ec{F}\cdot\hat{x}
ight)\hat{x}$$

mit

$$\hat{x} = \frac{\vec{x}}{|\vec{x}|}$$

 $\vec{F} = \begin{pmatrix} 0\\0\\1 \end{pmatrix}$

für

Verschiebungsfeld einer einzelnen Kraft

Verschiebungsmuster des 2. Terms,

$$\vec{F}_{\text{tangential}} = \vec{F} - \vec{F}_{\text{radial}},$$

für

$$\vec{F} = \begin{pmatrix} 0\\0\\1 \end{pmatrix}$$

Verschiebungsfeld einer einzelnen Kraft

Verschiebungsmuster des 3. Terms,

$$\vec{F}_{\text{Dipol}} = 3\vec{F}_{\text{radial}} - \vec{F}$$
,

für

$$\vec{F} = \begin{pmatrix} 0\\0\\1 \end{pmatrix}$$

Verschiebungsfeld einer einzelnen Kraft

Beispiel: 2. Term (S-Welle) für

$$ec{F}(t) = egin{pmatrix} 0 \ 0 \ F_3(t) \end{pmatrix}$$
 ,

 $F_3(t)$ steigt innerhalb von 10 s von 0 auf 10^{16} N an.

Kräftepaare

Einzelne Kraft verursacht insgesamt eine Verschiebung in Richtung der Kraft.

nicht möglich

Erdbeben bestehen aus (mindestens) einem Paar gleich großer, entgegengesetzter Kräfte \vec{F} and $-\vec{F}$, welche um einen kleinen Versatz \vec{a} verschoben angreifen (bei $\frac{\vec{a}}{2}$ und $-\frac{\vec{a}}{2}$ statt im Koordinatenursprung).

Verschiebungsfeld eines Kräftepaars

Beispiel: 2. Term (S-Welle) für

$$ec{F}(t) = \begin{pmatrix} 0 \\ 0 \\ F_3(t) \end{pmatrix}$$
, $ec{a} = \begin{pmatrix} 100 \text{ m} \\ 0 \\ 0 \end{pmatrix}$

 $F_3(t)$ steigt innerhalb von 10 s von 0 auf 10^{16} N an.

Der Momentensor

Definition:

$$M(t) = \vec{F}(t) \otimes \vec{a} = \vec{F}(t) \vec{a}^{T} = \begin{pmatrix} F_{1}a_{1} & F_{1}a_{2} & F_{1}a_{3} \\ F_{2}a_{1} & F_{2}a_{2} & F_{2}a_{3} \\ F_{3}a_{1} & F_{3}a_{2} & F_{3}a_{3} \end{pmatrix}$$

für $\vec{a} \rightarrow 0$ (dabei passend $\vec{F} \rightarrow \infty$) Einheit: Nm

Permanenter Versatz:

$$u \sim rac{M}{|ec{x}|^2}$$
 für $|ec{x}| o \infty$

Amplitude der Wellen:

$$u ~\sim~ rac{\dot{M}}{ert ec{x} ert}$$
 für $ert ec{x} ert
ightarrow \infty$

Beispiele von $\dot{M}(t)$ für starke Erdbeben

Komponenten des Momententensors

Symmetrie des Momententensors

Nicht-symmetrische Momententensoren verursachen eine bleibende Drehung des Mediums.

M muss symmetrisch sein: $M^T = M$, $M_{ji} = M_{ij}$.

Die Spur des Momententensors

 $tr(M) = M_{11} + M_{22} + M_{33}$ definiert den Grundtyp der seismischen Quelle:

$$tr(M) \begin{cases} > 0 : Explosion \\ = 0 : Erdbeben im engeren Sinn \\ < 0 : Implosion \end{cases}$$

Abstrahlungscharakteristiken verschiedener Momententensoren

P-Wellen für

$$\dot{M} \sim \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

S-Wellen für

$$\dot{M} \sim \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

P-Wellen für

$$\dot{M} \sim \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

(unsymmetrisch, nicht erlaubt!)

S-Wellen für

$$\dot{M} \sim \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

(unsymmetrisch, nicht erlaubt!)

Abstrahlungscharakteristiken verschiedener Momententensoren

P-Wellen für

$$\dot{M} \sim \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

S-Wellen für

$$\dot{M} \sim \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$$

Herdkugeln

ū(

Herdkugeln

Verschiebungsfeld der P-Wellen eines Kräftepaars (nur. 1 Term) für $|\vec{x}| \rightarrow \infty$:

$$\vec{x}, t) = \frac{s_{\rho}^{2}}{4\pi\rho|\vec{x}-\frac{\vec{a}}{2}|}\vec{F}_{radial}(t-s_{\rho}|\vec{x}-\frac{\vec{a}}{2}|)$$

$$- \frac{s_{\rho}^{2}}{4\pi\rho|\vec{x}+\frac{\vec{a}}{2}|}\vec{F}_{radial}(t-s_{\rho}|\vec{x}+\frac{\vec{a}}{2}|)$$

$$\approx \frac{s_{\rho}^{3}}{4\pi\rho|\vec{x}|}\left(\left(\dot{M}(t-s_{\rho}|\vec{x}|)\hat{x}\right)\cdot\hat{x}\right)\hat{x}$$

Verschiebung radial nach außen (Einsatz der P-Welle mit Kompression), wenn die quadratische Form $(\dot{M}\hat{x})\cdot\hat{x} > 0$ ist.

b

Herdkugeln

Herdkugeln

- Richtungen, in denen die P-Welle zuerst mit Kompression ankommt, d. h., (Mx̂) · x̂ > 0 bzw. (Mx̂) · x̂ > 0, werden eingefärbt.
- Richtungen, in denen die P-Welle zuerst mit Dilatation ankommt, bleiben weiß.
- Projektion der unteren Halbkugel wird dargestellt.

View from side

View from above

Das skalare seismische Moment

Für

$$M = \begin{pmatrix} 0 & 0 & M_0 \\ 0 & 0 & 0 \\ M_0 & 0 & 0 \end{pmatrix}$$

(o. ä.), ist M_0 [Nm] das (skalare) seismische Moment.

Allgemein für

$$M = \begin{pmatrix} M_1 & 0 & 0 \\ 0 & M_2 & 0 \\ 0 & 0 & M_3 \end{pmatrix}$$

mit $M_1 \ge M_2 \ge M_3$ (Eigenwerte von M):

$$M_0 = \frac{M_1 - M_3}{2}$$

Das skalare seismische Moment

Alternative Definition / Interpretation des seismischen Moments:

$$M_0 = \mu A \overline{u}$$

mit

- $\mu~=~$ 2. Lamé-Parameter des Mediums
 - = Schermodul [Pa]
- A = Größe der Bruchfläche [m²]
- \overline{u} = mittlerer Versatz entlang der Bruchfläche [m]

Intensitiät und Magnitude

Intensität charakterisiert die Stärke eines Erdbebens durch seine Auswirkungen auf die Erdoberfläche, Infrastruktur und Menschen.

- Üblicherwiese durch eine römische Ziffer dargestellt.
- Grundlage: 12-teilige (ursprünglich 10-teilige) Skala von I (unmerklich) bis XII (große Katastrophe) nach G. Mercalli (1850–1914).
- Erweiterungen / Verfeinerungen: MCS- (Mercalli-Cancani-Sieberg) Skala, MWN- (Mercalli-Wood-Neumann) Skala, MSK-Skala (Medvedev, Sponheuer & Karnik, 1964), EMS-98-Skala (European Macroseismic Scale, 2000).
- Magnitude charakterisiert die Stärke eines Erdbebens auf Basis physikalischer Messgrößen.
 - Üblicherwiese durch arabische Zahlen mit einer Nachkommastelle dargestellt.
 - Verschiedene Magnitudendefinitionen in Gebrauch.

Grundsätzliche Definition von Erdbebenmagnituden

Aus jeder physikalische Messgröße X, welche die Stärke eines Erdbebens beschreibt, z. B.

- gesamtes seismisches Moment M₀,
- maximale Bodenverschiebung $|\vec{u}|_{\max}$ an der Erdoberfläche,
- freigesetzte Energie,
- Dauer des Erdbebens

lässt sich eine Magnitude M_X gemäß

$$M_X = e \log_{10} \left(\frac{X}{X_0} \right)$$

definieren.

Grundsätzliche Definition von Erdbebenmagnituden

- X₀ legt fest, welchem Messwert der Magnitudenwert 0 entspricht.
- Alle Magnitudendefinitionen sind logarithmisch:

$$X \mapsto kX \rightarrow M_X \mapsto M_X + e \log_{10} f$$

Der Faktor e legt fest, um wieviel M_X steigt, wenn X verzehnfacht wird (meist e = 1).

• X₀ und *e* werden so gewählt, dass verschiedene Magnitudendefinitionen im Durchschnitt möglichst gut übereinstimmen.

Ober- und Untergrenzen von Erdbebenmagnituden

- Alle Magnitudenskalen sind grundsätzlich nach oben und unten offen.
- Die faktischen Obergrenzen ergeben sich aus der Größe der maximal in der Lithosphäre möglichen Bruchflächen und durch das Frequenzspektrum der von Erdbeben abgestrahlten Wellen.
- Negative Magnituden sind möglich. Der Nullpunkt ist willkürlich und spiegelt wider, was zur Zeit der ersten Magnitudendefinition (C. F. Richter, 1935) als sinnvolle Nachweisgrenze galt.

Erdbebenmagnituden

Die Lokalmagnitude (Richterskala)

- Von C. F. Richter 1935 eingeführt.
- Symbol: *M_L* oder *ML*
- X ist der maximale Ausschlag eines Wood-Anderson-Seismometers in 100 km Entfernung vom Epizentrum.

•
$$e=1$$
, $X_0=1\,\mu\mathrm{m}$

Die Oberflächenwellenmagnitude

- Symbol: *M_S* oder *MS*
- Ursprüngliche Definition (B. Gutenberg 1945): X = maximale horizontale Bodenverschiebung im Periodenbereich von 18 s bis 22 s.
- Seit 1962 modifizierte Definition mit Berücksichtigung aller Oberflächenwellen.

Raumwellenmagnituden

- X ist die maximale Amplitude von P- und S-Wellen.
- Zwei signifikant verschiedene Definitionen in Gebrauch.
- Symbole: *m_B*, *mB*, *m_b*, *mb*,
- *m_b* bzw. *mb* berücksichtigt nur recht hochfrequente Komponenten und unterscheidet sich stark von anderen Magnitudendefinitionen.
- Hauptsächlich verwendet zur Charakterisierung sehr tiefer Erdbeben.

Erdbebenmagnituden

Die Momenten-Magnitude

- Von H. Kanamori 1977 eingeführt.
- $X = M_0$ = skalares seismisches Moment.
- $e = \frac{2}{3}$, $X_0 = 1.4 \times 10^9 \,\mathrm{Nm}$

$M_W = \frac{2}{3} \log_{10} M_0 - 6.1$

mit M_0 in Nm.

• Charakterisiert eher die Stärke des Erdbebens am Erdbebenherd als die abgestrahlten seismischen Wellen.

Eher eine tektonische als eine seismologische Magnitudenskala.

