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Earth's Surface Heat Flux

Regional Variation of the Surface Heat Flux Density
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Source: Davies & Davies, Earth's surface heat flux, Solid Earth, 2010




Earth's Surface Heat Flux

[ e
UNI
FREIBURG

Definition of Heat Flux Density

G = energy per time and cross section area [Y%]
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Earth’s Mean Surface Heat Flux Density

Continental crust (40 % of total surface): g = 70.9 ";—\/2\/

Oceanic crust (60 % of total surface): q = 105.4 %VQM
Overall mean: g=291.6 ";—;W

@ g is more than 4 orders of magnitude smaller than the solar constant
S =1367 Y.
@ g describes the long-term mean energy balance ot the solid Earth.

@ g reflects the ongoing cooling of Earth and from radiogenic heat
production in the upper continental crust.
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The Temperature in Earth's Crust
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A Typical Continental Geotherm
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Fundamentals — Heat Transport

Fourier's Law of Heat Conduction (1822)

© Heat flow follows the direction of steepest descent of the temperature
field T(x,t) = T(x,y, z, t).

© Heat flow is proportional to the decrease of temperature per length:

6 T(x,y, zt)
G(Rt) = —AVT(%t) = —\ T(x,y, z,t) (1)
LTty
with
G(X,t) = heat flux density (energy per area and time) [%V;]
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Fundamentals — Heat Transport

The Thermal Conductivity

Typical Values:

Material A [ Rocks A [

diamond 2300 granite 2.8

iron 80 basalt 2

sand 0.6 dolomite 25

polyethylene (PE) 0.48 limestone 25

expanded polystyrene (EPS) [ 0.033 sandstone 2.5

water 0.6 clay 1.4

air 0.026 widely used value 2.5
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Fundamentals — Heat Transport

The Equation of Continuity (Energy Balance)

rate of change of the thermal energy contained in a given volume

energy per time entering at the boundaries

energy per time leaving at the boundaries
+

energy per time generated within the volume

energy per time consumed within the volume




Fundamentals — Heat Transport

The Equation of Continuity (Energy Balance)

Energy balance of a cube without heat production:

AZ Z
y
d
d
d 4 d X

Change in thermal energy E contained in the cube:

9 d?— qd® + oy d® — qyd + qud? — . (2)

ot ax ax ay Ay qz qz
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Fundamentals — Heat Transport

The Equation of Continuity (Energy Balance)

Change in energy density e (thermal energy per volume):
OE
de _ &
ot d3
ax — gx — qy qz —
d + d + d
dgx 0q, Oq;
—— = = = for d
— I By 5 or —0
= —div(q) (3)
with the divergence operator
o 9qx  9q,  0q:
d ox Yy 4
v (q) ox T oy T oz (4)




Fundamentals — Heat Transport
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The Specific Heat Capacity

Volumetric heat capacity
Oe
Cvol 8_7- (5)
describes the change in thermal energy density e [m%] with
temperature T.
. J
Unit: mK
Specific heat capacity
10
c = CV0| — - _e (6)
p pOT
is measured per mass instead of per volume (p = density).
o
Unit: kg_K

4
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Fundamentals — Heat Transport

The Specific Heat Capacity
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Molar heat capacity

Cmol =

is measured per mol instead of p
Unit:

mol K

Dulong-Petit law:

Cmol

with the gas constant R = 8.314 —

er kg (M = molar mass).

~ 3R

IK for most crystalline solids.

(8)
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Fundamentals — Heat Transport

The Specific Heat Capacity
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Typical values at standard conditions:

Material c [ﬁ] Rocks c [kg%]

diamond 509 granite 1000

iron 450 basalt 850

sand 550 dolomite 1000

polyethylene (PE) 1250 limestone 900
expanded polystyrene (EPS) [ 1500 sandstone 900
water 4187 clay 1100

air 1005 widely used value 900
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Fundamentals — Heat Transport
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The Heat Conduction Equation (Energy Balance + Fourier's Law)

General version:

pc%—: = % = —div(g) = div(AVT)

0 oT 0 oT 0 oT
= a@%)*a—y@w)%(%) ©)

Simplified version for constant A:

oT <82T T 0°T

P ot Ox? * dy? - 8z2> = AAT (10)

with the Laplace operator

02 02 92 :
B = ) +8y +@ = divV (11)




Fundamentals — Heat Transport
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The Thermal Diffusivity

The heat conduction equation for constant A can be written in the form

oT 0’T 0°T 9T
ot ”(ax2 TR 622) = rAT (12)

with the thermal diffusivity

Water: k =1.4 x 107 m{

Rocks: k ~ 1070 %2 ~ 30 m?z
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Fundamentals — Heat Transport
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Thermal Conductivity ()

w. W
Unlt. mK

Meaning: Describes how well a material conducts heat.

.

Heat Capacity (¢, ol, Cmol)

N
Unit: 2R, 3k molk

Meaning: Describes how much energy is needed to heat up a material.

\

Thermal Diffusivity (k)

Unit: m?

S

Meaning: Describes how rapidly temperature propagates.
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The Temperature in Earth's Crust

One-Dimensional Description

Most of the large-scale heat conduction problems in the lithosphere can be
approximated in 1D.

T(x,y, z, t) does not depend on x and y

\Z

pesT(at) = —oazt)  (13)

= % <)\ % T(z, t)>(14)

The z axis is often assumed to point in downward direction.
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The Temperature in Earth's Crust

One-Dimensional Steady-State Geotherms

pc%T(z, t) = —%q(z, t)y =0 (15)
q(z) = —)\%T(z) = —¢gs = const (16)

with gs = —q(0) = surface heat flux density

\Z

T(z) = Tet =z (17)

if A is constant with T, = T(0) = surface temperature

17 /43



The Temperature in Earth's Crust
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Why are Geotherms Curved?

Spatial variation in A: not very strong in general

Advective heat transport: important at some locations in the crust
(hydrothermal circulation) and in the asthenosphere

Non-steady state: significant for oceanic crust and highly active
continental crust

Radiogenic heat production: strong effect in the upper continental crust
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The Temperature in Earth's Crust

Radiogenic Heat Production

@ Main contributions: decay of uranium 238y, 2354, thorium 232Th, and
potassium 40K.
@ Strong variation; typical heat production rates:

granite: S =~ 2.5 ‘;—;W

basalt: S ~0.1 ‘r‘n—;w
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The Temperature in the Continental Crust

Correlation of Surface Heat Flux and Radiogenic Heat Production
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Fundamentals — Heat Transport
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The Heat Conduction Equation with Heat Production

3D version:
pes T(%,8) = —div(d(% 1)) + (5. 1) (18)
— div(AVT(R. 1)) + S(%, 1) (19)

1D version:
peiT(zt) = —alzt)+S(z.1) (20)
_ % ()\ %T(z, t)) +S(z 1) (21)
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One-Dimensional Steady-State Geotherms

Steady-State Heat Conduction Equation with Heat Production

9s—aqp = —q(0) = (—q(d)) = A 5(§) d¢
where d = thickness of the lithosphere
gs = —q(0) = surface heat flux density
gy = —q(d) = basal heat flux density
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One-Dimensional Steady-State Geotherms

The Relationship Between Heat Flux Density and Heat Production

From the diagram:

@ Variations in surface heat flux density mainly arise from variations in
radiogenic heat production.

@ Straight line
gs = qp+ hSs (25)
where Sy = heat production rate at the surface.

Typical values:

gp ~ 28TY (26)
h = =% ~ 10km (27)

Ss




One-Dimensional Steady-State Geotherms
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How is Radiogenic Heat Production Distributed in the Crust?

Two simple models:

Model 1: constant heat production down to a given depth h

S(z) = {55 forz<h

0 else

\Z

o(z) = /S ) de = _{qs—Ssz for z< h

e/ else

_ gs—(9s —qp) 7 forz<h
dp else

(28)
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One-Dimensional Steady-State Geotherms

How is Radiogenic Heat Production Distributed in the Crust?

Model 2: exponentially decreasing heat production rate

S(z) = Sseh (30)

\Z

a(z) = q(0)+/025(§)d§ = —(a:-Sh(1-¢7F))

= = (qb + (g5 — q») eﬁ) (31)

@ Both models cannot be distinguished from the surface data.

@ Model 2 is theoretically better as it is consistent with surface erosion.

v
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Time-Dependent Geotherms

Solution for a Sudden Change in Surface Temperature

Assume an initial temperature T(z,0) =0 (z > 0) and that the surface
temperature switches to T(0,t) =1 at t = 0.

No characteristic length scale and no characteristic time scale, but length
scale and time scale are related by the thermal diffusivity «.

L(t) = et (32)

defines a length scale for each time t.
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Time-Dependent Geotherms

Solution for a Sudden Change in Surface Temperature

Idea: Assume that the shape of the temperature profile remains constant,
while only the spatial scale changes.

\7

Look for solutions T(z, t) which only depend on

YT 200) T 2kt (33)

instead of z and t indiviually. The factor 2 is only for convenience.
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Time-Dependent Geotherms

Solution for a Sudden Change in Surface Temperature
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or _ 0T ou 0T z -1 _ 0T -u (34)
ot  Ou 0t  Ou 2k o3  Ou 2t
OT _ 9T ou _ 0T 1 -
dz  Ou 0z  Ou 2\/kt
T PT 1
2 T 0 ant (36)
oT —u T 1
02t~ "ou ant (37)
0 0T oT
duou ~ oy (38)




[t
UNI
FREIBURG

Time-Dependent Geotherms

Solution for a Sudden Change in Surface Temperature

Solution:
aT i
E = ae (39)

with an arbitrary constant a.

\Z

Solution for T(u) with the condition T(u) — 0 for u — oo:

T(w) = - / 2 e (40)
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Time-Dependent Geotherms

Solution for a Sudden Change in Surface Temperature

Adjust a so that T(0) = 1:
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T(u) = %/e_xzdx = erfc(u) (41)

where erfc(u) is called complementary error function. It is related to the
Gaussian error function

erf(y) = % / e d (42)
0

erf(u) +erfc(u) = 1 (43)

30/43
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Time-Dependent Geotherms

Solution for a Sudden Change in Surface Temperature

2

—f(u) = erf(u) ||
5 : ; : — f(u) = erfc(u)
1.5 SRR N SRR | = - —relevant part

: : : + (0.5,0.5)

O .................................................................
Y | O RS AT ST AT SO
-1 R RIS AR
-3 -2 -1 0 1 2 3
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Time-Dependent Geotherms

Solution for a Sudden Change in Surface Temperature

T(z,t) = erfc <%(t)> = erfc <2L\/H> (44)

describes the temperature in the domain z > 0 with the initial
temperature T(z,0) = 0 where the surface temperature switches to
T(0,t)=1att=0.

The length scale of heat conduction L(t) = v/t describes the depth
where the temperature is T(L(t), t) = 3 at the time t.
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Fundamentals — Linear Differential Equations

Superposition of Solutions

The heat conduction equation is linear:

o If T is a solution, aT is also a solution for any (constant) factor a.

@ If Ty and T5 are solutions, T1 + T> is also a solution.

\7

Solutions of the heat conduction equation can be superposed.

33/43
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Fundamentals — Linear Differential Equations

Superposition of Solutions

Example: Assume that

@ Tp(X) is a solution of the steady-state equation with heat production

div(AVTh(X))+S(X) = 0 (45)
e T:(X, t) is a solution of the time-dependent equation without heat
production
0

\Z

T(X, t) = Tm(X) + T¢(X, t) is a solution of the full equation

0

pes T(% 1) = dv(AVT(X, 1)+ S(X) (47)
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Seasonal Variation of the Subsurface Temperature

Harmonic Solution

Assume a harmonic oscillation of the surface temperature (z = 0):

T(0,t) = cos(wt) (48)
with
27
w = — = angular frequency
T
T = period (e.g., 1 year)

Technically more convenient:

T(0,t) = et (49)
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real exponential function with the sine and cosine functions.

The Complex Expo
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Seasonal Variation of the Subsurface Temperature

Harmonic Solution

Solve the differential equation
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2
% T(z,t) = & % T(z,t) (50)

with T(0,t) = e/“t. Assume that the harmonic oscillation persists for all
depths z, but with a depth-dependent amplitude A(z):

T(z,t) = e“tA(2) (51)
Insert into Eq. 50:
a—zA(z) = iﬂA(z) (52)
0z2 K
Solution:
Alz) = e A GOV (53)
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Seasonal Variation of the Subsurface Temperature

Harmonic Solution

The condition A(z) — 0 for z — oo is only satisfied with the minus sign.

T(Z, t) = eth e_(l""i)\/gz — ei(wt— iz) e_\/%z
ei(w‘*‘_g)efg (54)

with the depth of penetration

d = /2 = /& (55)

w ™

With cosine instead of the complex exponential function:

T(z,t) = cos (wt - 2) e d (56)
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Seasonal Variation of the Subsurface Temperature

Harmonic Solution




Seasonal Variation of the Subsurface Temperature
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Harmonic Solution

Amplitude: e”d => disthe depth where the temperature oscillation
has decreased to % of the oscillation at the surface.

Phase shift: Oscillation is opposite to the oscillation at the surface for
z =md.

The Diel Variation

Same equations as for the seasonal variation, but the depth of penetration
d is almost 20 times lower.
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Seasonal Variation of the Subsurface Temperature

Superposition of Seasonal and Diel Oscillation

T(z,t) = Tm(z)+ Ty(z,t)+ Ty(z, t) (57)
with
Tm(z) = steady-state geotherm
Ty(z,t) = aycos (wy(t — i)l = di) e % = seasonal variation (58)
y
Ty(z,t) = agcos (wd(t —tg) — di) e % = diel variation (59)
d
ay,ag = amplitudes
wy,wg = angular frequencies
t,, tg = time lag of maximum temperature vs. t =0
dy,dy = depths of penetration

v
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Seasonal Variation of the Subsurface Temperature

Anharmonic Oscillations

Solution schemes:

@ numerical simulation

@ superposition of harmonic components with angular frequencies w,
2w, 3w, ... (Fourier series)

@ superposition of solutions for step-like variations

Solution approaches the harmonic solution for increasing depth.
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Seasonal Variation of the Subsurface Temperature

Anharmonic Oscillations

20 ! ! ! ! ! ! ! ! ! ! !

t [months]
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