Geothermics and Geothermal Energy The Temperature in Earth's Crust

Stefan Hergarten

Institut für Geo- und Umweltnaturwissenschaften Albert-Ludwigs-Universität Freiburg

Regional Variation of the Surface Heat Flux Density

Definition of Heat Flux Density

 \vec{q} = energy per time and cross section area $\left[\frac{W}{m^2}\right]$

Earth's Mean Surface Heat Flux Density

Continental crust (40 % of total surface): $q = 70.9 \frac{\text{mW}}{\text{m}^2}$ Oceanic crust (60 % of total surface): $q = 105.4 \frac{\text{mW}}{\text{m}^2}$ Overall mean: $q = 91.6 \frac{\text{mW}}{\text{m}^2}$

- q is more than 4 orders of magnitude smaller than the solar constant $S = 1367 \frac{W}{m^2}$.
- q describes the long-term mean energy balance ot the solid Earth.
- *q* reflects the ongoing cooling of Earth and from radiogenic heat production in the upper continental crust.

The Temperature in Earth's Crust

A Typical Continental Geotherm

Fourier's Law of Heat Conduction (1822)

- Heat flow follows the direction of steepest descent of the temperature field T(x, t) = T(x, y, z, t).
- 2 Heat flow is proportional to the decrease of temperature per length:

$$\vec{q}(\vec{x},t) = -\lambda \nabla T(\vec{x},t) = -\lambda \left(\begin{array}{c} \frac{\partial}{\partial x} T(x,y,z,t) \\ \frac{\partial}{\partial y} T(x,y,z,t) \\ \frac{\partial}{\partial z} T(x,y,z,t) \end{array} \right)$$
(1)

with

$$\vec{q}(\vec{x}, t) =$$
 heat flux density (energy per area and time) $\left[\frac{W}{m^2}\right]$
 $\lambda =$ thermal conductivity $\left[\frac{W}{mK}\right]$

The Thermal Conductivity

Typical Values:

Material	$\lambda \left[\frac{W}{m K}\right]$	Rocks λ	$\left[\frac{W}{m K}\right]$
diamond	2300	granite	2.8
iron	80	basalt	2
sand	0.6	dolomite	2.5
polyethylene (PE)	0.48	limestone	2.5
expanded polystyrene (EPS)	0.033	sandstone	2.5
water	0.6	clay	1.4
air	0.026	widely used value	2.5

The Equation of Continuity (Energy Balance)

rate of change of the thermal energy contained in a given volume

energy per time entering at the boundaries energy per time leaving at the boundaries

+

energy per time generated within the volume

energy per time consumed within the volume

The Equation of Continuity (Energy Balance)

Energy balance of a cube without heat production:

$$\frac{\partial E}{\partial t} = q_x d^2 - q_x d^2 + q_y d^2 - q_y d^2 + q_z d^2 - q_z d^2 \qquad (2)$$

The Equation of Continuity (Energy Balance)

Change in energy density *e* (thermal energy per volume):

$$\frac{\partial e}{\partial t} = \frac{\frac{\partial E}{\partial t}}{d^3}$$

$$= \frac{q_x - q_x}{d} + \frac{q_y - q_y}{d} + \frac{q_z - q_z}{d}$$

$$\to -\frac{\partial q_x}{\partial x} - \frac{\partial q_y}{\partial y} - \frac{\partial q_z}{\partial z} \quad \text{for} \quad d \to 0$$

$$= -\text{div}(\vec{q})$$

with the divergence operator

div
$$(\vec{q}) = \frac{\partial q_x}{\partial x} + \frac{\partial q_y}{\partial y} + \frac{\partial q_z}{\partial z}$$

(3)

(4)

(5)

The Specific Heat Capacity

Volumetric heat capacity

$$c_{\text{vol}} = \frac{\partial e}{\partial T}$$

describes the change in thermal energy density $e\left[\frac{J}{m^3}\right]$ with temperature T.

Unit: $\frac{J}{m^3 K}$ Specific heat capacity

$$c = \frac{c_{\text{vol}}}{\rho} = \frac{1}{\rho} \frac{\partial e}{\partial T}$$
 (6)

is measured per mass instead of per volume (ρ = density). Unit: $\frac{J}{kg\,K}$

(7)

The Specific Heat Capacity

Molar heat capacity

$$c_{\rm mol} = Mc = \frac{M}{\rho} \frac{\partial e}{\partial T}$$

is measured per mol instead of per kg (M = molar mass). Unit: $\frac{J}{\text{mol }K}$ Dulong-Petit law:

$$c_{\rm mol} \approx 3R$$
 (8)

with the gas constant $R = 8.314 \frac{\text{J}}{\text{mol K}}$ for most crystalline solids.

The Specific Heat Capacity

Typical values at standard conditions:

Material	$c\left[\frac{J}{kgK}\right]$	Rocks $c \left[\frac{J}{kg K} \right]$
diamond	509	granite 1000
iron	450	basalt 850
sand	550	dolomite 1000
polyethylene (PE)	1250	limestone 900
expanded polystyrene (EPS)	1500	sandstone 900
water	4187	clay 1100
air	1005	widely used value 900

The Heat Conduction Equation (Energy Balance + Fourier's Law)

General version:

$$\rho c \frac{\partial T}{\partial t} = \frac{\partial e}{\partial t} = -\operatorname{div}\left(\vec{q}\right) = \operatorname{div}\left(\lambda\nabla T\right)$$
$$= \frac{\partial}{\partial x}\left(\lambda\frac{\partial T}{\partial x}\right) + \frac{\partial}{\partial y}\left(\lambda\frac{\partial T}{\partial y}\right) + \frac{\partial}{\partial z}\left(\lambda\frac{\partial T}{\partial z}\right) \qquad (9)$$

Simplified version for constant λ :

$$\rho c \frac{\partial T}{\partial t} = \lambda \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right) = \lambda \Delta T$$
(10)

with the Laplace operator

$$\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} = \operatorname{div}\nabla$$
(11)

The Thermal Diffusivity

The heat conduction equation for constant $\boldsymbol{\lambda}$ can be written in the form

$$\frac{\partial T}{\partial t} = \kappa \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right) = \kappa \Delta T$$
(12)

with the thermal diffusivity

$$\kappa = \frac{\lambda}{\rho c}$$

Water: $\kappa = 1.4 \times 10^{-7} \frac{\text{m}^2}{\text{s}}$ Rocks: $\kappa \approx 10^{-6} \frac{\text{m}^2}{\text{s}} \approx 30 \frac{\text{m}^2}{\text{a}}$

Thermal Conductivity (λ)

Unit: $\frac{W}{mK}$ Meaning: Describes how well a material conducts heat.

Heat Capacity (c, c_{vol}, c_{mol})

Unit: $\frac{J}{kgK}$, $\frac{J}{m^{3}K}$, $\frac{J}{mol K}$ Meaning: Describes how much energy is needed to heat up a material.

Thermal Diffusivity (κ)

Unit: $\frac{m^2}{s}$ Meaning: Describes how rapidly temperature propagates.

One-Dimensional Description

Most of the large-scale heat conduction problems in the lithosphere can be approximated in 1D.

The z axis is often assumed to point in downward direction.

One-Dimensional Steady-State Geotherms

$$\rho c \frac{\partial}{\partial t} T(z, t) = -\frac{\partial}{\partial z} q(z, t) = 0$$

$$(15)$$

$$q(z) = -\lambda \frac{\partial}{\partial z} T(z) = -q_s = \text{const}$$

$$(16)$$

with $q_s = -q(0) =$ surface heat flux density

$$T(z) = T_s + \frac{q_s}{\lambda} z$$
(17)

if λ is constant with $T_s = T(0) =$ surface temperature

Why are Geotherms Curved?

Spatial variation in λ : not very strong in general

Advective heat transport: important at some locations in the crust (hydrothermal circulation) and in the asthenosphere

Non-steady state: significant for oceanic crust and highly active continental crust

Radiogenic heat production: strong effect in the upper continental crust

Radiogenic Heat Production

- Main contributions: decay of uranium ²³⁸U, ²³⁵U, thorium ²³²Th, and potassium ⁴⁰K.
- Strong variation; typical heat production rates:

granite: $S \approx 2.5 \frac{\mu W}{m^3}$ basalt: $S \approx 0.1 \frac{\mu W}{m^3}$

The Temperature in the Continental Crust

Correlation of Surface Heat Flux and Radiogenic Heat Production

The Heat Conduction Equation with Heat Production

3D version:

$$\rho c \frac{\partial}{\partial t} T(\vec{x}, t) = -\operatorname{div} \left(\vec{q}(\vec{x}, t) \right) + S(\vec{x}, t)$$

$$= \operatorname{div} \left(\lambda \nabla T(\vec{x}, t) \right) + S(\vec{x}, t)$$
(18)
(19)

1D version:

$$\rho c \frac{\partial}{\partial t} T(z, t) = -\frac{\partial}{\partial z} q(z, t) + S(z, t)$$
(20)

$$= \frac{\partial}{\partial z} \left(\lambda \frac{\partial}{\partial z} T(z, t) \right) + S(z, t)$$
(21)

One-Dimensional Steady-State Geotherms

Steady-State Heat Conduction Equation with Heat Production

where

q

- d = thickness of the lithosphere
- $q_s = -q(0) =$ surface heat flux density
- $q_b = -q(d) =$ basal heat flux density

22 / 43

One-Dimensional Steady-State Geotherms

The Relationship Between Heat Flux Density and Heat Production

From the diagram:

- Variations in surface heat flux density mainly arise from variations in radiogenic heat production.
- Straight line

$$q_s = q_b + hS_s \tag{25}$$

where S_0 = heat production rate at the surface.

Typical values:

$$q_b \approx 28 \frac{\text{mW}}{\text{m}^2}$$
 (26)
 $h = \frac{q_s - q_b}{S_s} \approx 10 \text{ km}$ (27)

How is Radiogenic Heat Production Distributed in the Crust?

Two simple models:

Model 1: constant heat production down to a given depth h

$$S(z) = \begin{cases} S_s & \text{for } z \le h \\ 0 & \text{else} \end{cases}$$
(28)

$$q(z) = q(0) + \int_0^z S(\xi) d\xi = -\begin{cases} q_s - S_s z & \text{for } z \le h \\ q_b & \text{else} \end{cases}$$
$$= -\begin{cases} q_s - (q_s - q_b) \frac{z}{h} & \text{for } z \le h \\ q_b & \text{else} \end{cases}$$
(29)

How is Radiogenic Heat Production Distributed in the Crust?

Model 2: exponentially decreasing heat production rate

$$S(z) = S_s e^{-\frac{z}{h}}$$
(30)

$$q(z) = q(0) + \int_{0}^{z} S(\xi) d\xi = -\left(q_{s} - S_{s}h\left(1 - e^{-\frac{z}{h}}\right)\right)$$

= $-\left(q_{b} + (q_{s} - q_{b})e^{-\frac{z}{h}}\right)$ (31)

- Both models cannot be distinguished from the surface data.
- Model 2 is theoretically better as it is consistent with surface erosion.

Assume an initial temperature T(z, 0) = 0 ($z \ge 0$) and that the surface temperature switches to T(0, t) = 1 at t = 0.

No characteristic length scale and no characteristic time scale, but length scale and time scale are related by the thermal diffusivity κ .

$$\downarrow L(t) = \sqrt{\kappa t}$$
(32)

defines a length scale for each time t.

Idea: Assume that the shape of the temperature profile remains constant, while only the spatial scale changes.

Look for solutions T(z, t) which only depend on

$$u = \frac{z}{2L(t)} = \frac{z}{2\sqrt{\kappa t}}$$
(33)

instead of z and t indiviually. The factor 2 is only for convenience.

$$\frac{\partial T}{\partial t} = \frac{\partial T}{\partial u} \frac{\partial u}{\partial t} = \frac{\partial T}{\partial u} \frac{z}{2\sqrt{\kappa}} \frac{-1}{2t^{\frac{3}{2}}} = \frac{\partial T}{\partial u} \frac{-u}{2t} \quad (34)$$

$$\frac{\partial T}{\partial z} = \frac{\partial T}{\partial u} \frac{\partial u}{\partial z} = \frac{\partial T}{\partial u} \frac{1}{2\sqrt{\kappa t}} \quad (35)$$

$$\frac{\partial^2 T}{\partial z^2} = \frac{\partial^2 T}{\partial u^2} \frac{1}{4\kappa t} \quad (36)$$

$$\frac{\partial T}{\partial u} \frac{-u}{2t} = \kappa \frac{\partial^2 T}{\partial u^2} \frac{1}{4\kappa t} \quad (37)$$

$$\frac{\partial}{\partial u} \frac{\partial T}{\partial u} = -2u \frac{\partial T}{\partial u} \quad (38)$$

Solution:

$$\frac{\partial T}{\partial u} = a e^{-u^2}$$
(39)

with an arbitrary constant a.

Solution for T(u) with the condition $T(u) \rightarrow 0$ for $u \rightarrow \infty$:

$$T(u) = -\int_{u}^{\infty} a e^{-x^2} dx \qquad (40)$$

Adjust a so that T(0) = 1:

$$T(u) = \frac{2}{\sqrt{\pi}} \int_{u}^{\infty} e^{-x^2} dx = \operatorname{erfc}(u)$$
(41)

where erfc(u) is called complementary error function. It is related to the Gaussian error function

$$\operatorname{erf}(u) = \frac{2}{\sqrt{\pi}} \int_{0}^{u} e^{-x^{2}} dx$$
 (42)

 $\operatorname{erf}(u) + \operatorname{erfc}(u) = 1$ (43)

Time-Dependent Geotherms

Solution for a Sudden Change in Surface Temperature

$$T(z, t) = \operatorname{erfc}\left(\frac{z}{2L(t)}\right) = \operatorname{erfc}\left(\frac{z}{2\sqrt{\kappa t}}\right)$$
 (44)

describes the temperature in the domain $z \ge 0$ with the initial temperature T(z, 0) = 0 where the surface temperature switches to T(0, t) = 1 at t = 0.

The length scale of heat conduction $L(t) = \sqrt{\kappa t}$ describes the depth where the temperature is $T(L(t), t) = \frac{1}{2}$ at the time t.

Superposition of Solutions

The heat conduction equation is linear:

- If T is a solution, aT is also a solution for any (constant) factor a.
- If T_1 and T_2 are solutions, $T_1 + T_2$ is also a solution.

Solutions of the heat conduction equation can be superposed.

Fundamentals – Linear Differential Equations

FREIBURG

Superposition of Solutions

Example: Assume that

• $T_m(\vec{x})$ is a solution of the steady-state equation with heat production

$$\operatorname{div}\left(\lambda\nabla T_{m}(\vec{x})\right) + S(\vec{x}) = 0 \tag{45}$$

• $T_t(\vec{x}, t)$ is a solution of the time-dependent equation without heat production

$$\rho c \frac{\partial}{\partial t} T_t(\vec{x}, t) = \operatorname{div} (\lambda \nabla T_t(\vec{x}, t))$$
(46)

 $T(\vec{x}, t) = T_m(\vec{x}) + T_t(\vec{x}, t)$ is a solution of the full equation

$$\rho c \frac{\partial}{\partial t} T(\vec{x}, t) = \operatorname{div} \left(\lambda \nabla T(\vec{x}, t) \right) + S(\vec{x})$$
(47)
_{34/4}

Harmonic Solution

Assume a harmonic oscillation of the surface temperature (z = 0):

$$T(0,t) = \cos(\omega t) \tag{48}$$

with

$$\omega = \frac{2\pi}{\tau} = \text{angular frequency}$$

 $\tau = \text{period (e. g., 1 year)}$

Technically more convenient:

$$T(0,t) = e^{i\omega t}$$
(49)

The Complex Exponential Function vs. Sine and Cosine

With $e^{i\phi} = \cos \phi + i \sin \phi$, the complex exponential function combines the real exponential function with the sine and cosine functions.

Seasonal Variation of the Subsurface Temperature

Harmonic Solution

Solve the differential equation

$$\frac{\partial}{\partial t}T(z,t) = \kappa \frac{\partial^2}{\partial z^2}T(z,t)$$
(50)

with $T(0, t) = e^{i\omega t}$. Assume that the harmonic oscillation persists for all depths *z*, but with a depth-dependent amplitude A(z):

$$T(z,t) = e^{i\omega t} A(z)$$
(51)

Insert into Eq. 50:

$$\frac{\partial^2}{\partial z^2} A(z) = \frac{i\omega}{\kappa} A(z)$$
(52)

Solution:

$$A(z) = e^{\pm \sqrt{\frac{i\omega}{\kappa}}z} = e^{\pm (1+i)\sqrt{\frac{\omega}{2\kappa}}z}$$

Harmonic Solution

The condition A(z)
ightarrow 0 for $z
ightarrow \infty$ is only satisfied with the minus sign.

$$T(z,t) = e^{i\omega t} e^{-(1+i)\sqrt{\frac{\omega}{2\kappa}}z} = e^{i\left(\omega t - \sqrt{\frac{\omega}{2\kappa}}z\right)} e^{-\sqrt{\frac{\omega}{2\kappa}}z}$$
$$= e^{i\left(\omega t - \frac{z}{d}\right)} e^{-\frac{z}{d}}$$
(54)

with the depth of penetration

$$d = \sqrt{\frac{2\kappa}{\omega}} = \sqrt{\frac{\kappa\tau}{\pi}}$$
(55)

With cosine instead of the complex exponential function:

$$T(z,t) = \cos\left(\omega t - \frac{z}{d}\right) e^{-\frac{z}{d}}$$
(56)

Seasonal Variation of the Subsurface Temperature

Harmonic Solution

Harmonic Solution

Amplitude: $e^{-\frac{z}{d}} \rightarrow d$ is the depth where the temperature oscillation has decreased to $\frac{1}{e}$ of the oscillation at the surface. Phase shift: Oscillation is opposite to the oscillation at the surface for $z = \pi d$.

The Diel Variation

Same equations as for the seasonal variation, but the depth of penetration d is almost 20 times lower.

Superposition of Seasonal and Diel Oscillation

$$T(z,t) = T_m(z) + T_y(z,t) + T_d(z,t)$$
(57)

with

$$T_m(z) = \text{steady-state geotherm}$$

$$T_y(z, t) = a_y \cos\left(\omega_y(t - t_y) - \frac{z}{d_y}\right) e^{-\frac{z}{d_y}} = \text{seasonal variation} (58)$$

$$T_d(z, t) = a_d \cos\left(\omega_d(t - t_d) - \frac{z}{d_d}\right) e^{-\frac{z}{d_d}} = \text{diel variation} (59)$$

$$a_y, a_d = \text{amplitudes}$$

$$\omega_y, \omega_d = \text{angular frequencies}$$

$$t_y, t_d = \text{time lag of maximum temperature vs. } t = 0$$

$$d_y, d_d = \text{depths of penetration}$$

Anharmonic Oscillations

Solution schemes:

- numerical simulation
- superposition of harmonic components with angular frequencies ω , 2ω , 3ω , ... (Fourier series)
- superposition of solutions for step-like variations

Solution approaches the harmonic solution for increasing depth.

Seasonal Variation of the Subsurface Temperature

Anharmonic Oscillations

