Geothermics and Geothermal Energy Deep Open Geothermal Systems

Stefan Hergarten

Institut für Geo- und Umweltnaturwissenschaften Albert-Ludwigs-Universität Freiburg

Steps of Conversion

Thermal energy \rightarrow mechanical work: turbine; rather low efficiency due to thermodynamic limitation

Mechanical work → electricity: generator; high efficiency

The Thermodynamic Limitation (Carnot Cycle)

$$\delta S = \frac{\delta Q_h}{T_h} + \frac{\delta Q_c}{T_c} \ge 0 \tag{1}$$

where

 δQ_h = thermal energy supplied to to the hot system

< 0 (from the geothermal reservoir into the turbine)

 T_h = temperature of the hot system

 δQ_c = thermal energy supplied to the cold system

> 0 (out of the turbine)

 T_c = temperature of the cold system

The Thermodynamic Limitation (Carnot Cycle)

Mechanical work yielded by one cycle (conservation of energy):

$$\delta W = -(\delta Q_h + \delta Q_c) \leq -\delta Q_h \left(1 - \frac{T_c}{T_h}\right) = -\eta_{\text{max}} \delta Q_h$$
 (2)

with the maximum efficiency

$$\eta_{\text{max}} = \frac{T_h - T_c}{T_h} \tag{3}$$

Consequence for the electrical, mechanical and thermal power of a geothermal power plant:

$$P_{\rm el} < P_{\rm me} < \eta_{\rm max} P_{\rm th}$$
 (4)

Dry Steam Power Plants

Source: Office of Energy Efficiency and Renewable Energy

Dry Steam Power Plants

- Rather simple technology
- First geothermal production of electricity: Larderello 1904
- \bullet Biggest geothermal power plant on Earth: "The Geysers", California, USA, 750 MW_{el}
- Limited to few locations on Earth

Flash Steam Power Plants

Source: Office of Energy Efficiency and Renewable Energy

Flash Steam Power Plants

- Most common type of geothermal power generation plants in operation today
- ullet Reasonable efficiency only for high-enthalpy resources ($T > 200^{\circ} {
 m C}$)

Binary Cycle Power Plants

Source: Office of Energy Efficiency and Renewable Energy

Binary Cycle Power Plants

- Heat transfer to a fluid with a boiling point below 100°C by a heat exchanger
- ullet Applicable to low-enthalpy resources ($T < 200^{\circ}$ C)
- Expensive technology
- Types:

Organic Rankine Cycle (ORC): Transfer heat to an organic fluid with a low boiling point and operate the turbine with this fluid, e.g., n-perfluorpentane (C_5F_{12} , boiling point 30°C, $T_c \approx 75$ °C)

Kalina cycle: Ammonia solution where the concentration of ammonia varies during the cycle; power plants in Germany at Unterhaching and Bruchsal

ORC Power Plants in Germany

Location	Depth [m]	T [°C]	$Q\left[\frac{1}{s}\right]$	$P_{th} \; [MW]$	Pel [MW]
Dürrnhaar	4114	130	135		5.5
Grünwald	4083	130	150	50	4.5
Insheim	3650	165	85		4.8
Kirchstockach	3750	139	145		5.5
Landau	3340	155	70		3.8
Neustadt-Glewe	2455	99	35	5.5	0.23
Sauerlach	4480	143	110		4.0
Simbach/Braunau	1942	80	74	7	0.2
Traunreut	4500	118	130		5.0(?)

Kalina Cycle Power Plants in Germany

Location	Depth [m]	T [°C]	$Q\left[\frac{1}{s}\right]$	$P_{th} \; [MW]$	P _{el} [MW]
Unterhaching	3350	122	150	38	3.36*
Bruchsal	2542	120	24	5.5	0.55

^{*} until 2017

Open Geothermal Systems

Principle

- Hot water is extracted at one or more wells.
- Cold water is (re)injected at another well; in most cases at the same rate as total extraction.
- Flow of water through a porous rock.

Source: Borehole Wireline

Major Problem

Maintaining the fluid circulation in the rock consumes a considerable part of the produced energy.

Porosity of Rocks

Total porosity: $\phi = \frac{\text{void volume}}{\text{total volume}}$; $0 \le \phi < 1$; often measured in percent

Effective porosity: only accessible pores and volume of water that can be extracted

Typical porosity values:

	ϕ_{tot} [%]	ϕ_{eff} [%]
equally sized spheres	26–48	26–48
soil	55	40
clay	50	2
sand	25	22
limestone	20	18
sandstone (semiconsolidated)	11	6
granite	0.1	0.09

Source: GlobalSecurity.org

Darcy's Law

- Empirically found by Henry Darcy (1856).
- Describes the average flow through a porous medium on macroscopic scales.
- Simplest form (without gravity):

$$\vec{v}(\vec{x},t) = -\frac{k}{\eta} \nabla p(\vec{x},t)$$
 (5)

where

$$\vec{v}$$
 = volumetric flow rate (Darcy velocity) $\left[\frac{m}{s}\right]$

$$p = \text{fluid pressure } [Pa]$$

$$k = \text{hydraulic permeability } [\text{m}^2]$$

$$\eta$$
 = dynamic viscosity of the fluid [Pas]

• Basically the same as Fourier's law of heat conduction.

The Hydraulic Permeability

Units:

SI unit: m²

Widely used unit: Darcy (D)

$$1 \, \mathrm{D} = 9.869 \times 10^{-13} \, \mathrm{m}^2 \approx 10^{-12} \, \mathrm{m}^2 = 1 \, \mu \mathrm{m}^2$$

- $k=1\,\mathrm{D}$ results in a flow rate of $1\,\frac{\mathrm{cm}}{\mathrm{s}}$ at a pressure drop of $1\,\frac{\mathrm{atm}}{\mathrm{cm}}$ in water at $20\,^{\circ}\mathrm{C}$ ($\eta=10^{-3}\,\mathrm{Pas}$).
- Typical values:

Medium	k [D]		
gravel	10-1000		
sand	0.01-10		
silt	$10^{-3} - 0.1$		

Medium	k [D]	
limestone	$10^{-6} - 100$	
fractured igneous rocks	$10^{-6} - 10$	
unfractured igneous rocks	$10^{-9} - 10^{-6}$	

The Darcy Equation

Balance equation for the mass of water per bulk volume

$$\frac{\partial \chi}{\partial t} = -\operatorname{div}(\rho_f \vec{v}) = \operatorname{div}\left(\rho_f \frac{k}{\eta} \nabla p\right) \tag{6}$$

where

$$\chi = \text{mass of fluid per bulk volume } \begin{bmatrix} \frac{\text{kg}}{\text{m}^3} \end{bmatrix}$$
 $\rho_f = \text{fluid density } \begin{bmatrix} \frac{\text{kg}}{\text{m}^3} \end{bmatrix}$

$$S \frac{\partial p}{\partial t} = -\operatorname{div}(\rho_f \vec{v}) = \operatorname{div}\left(\rho_f \frac{k}{\eta} \nabla p\right) \quad \text{with} \quad S = \frac{\partial \chi}{\partial p}$$
 (7)

The Darcy Equationi Compared to the Heat Conduction Equation

Basically the same equation as the heat conduction equation with a different meaning of the parameters.

heat conduction	Т	λ	ρс	$\kappa = \frac{\lambda}{\rho c}$
Darcy flow	р	$\rho_f \frac{k}{\eta}$	S	$ ilde{\kappa} = rac{ ho_f k}{\eta S}$

If all parameters are constant:

$$\frac{\partial T}{\partial t} = \kappa \Delta T, \qquad \vec{q} = -\lambda \nabla T \tag{8}$$

$$\frac{\partial p}{\partial t} = \tilde{\kappa} \Delta p, \qquad \vec{v} = -\frac{k}{\eta} \nabla p \tag{9}$$

Superposition of Solutions

The simplest form of Darcy's equation is linear.

Solutions can be superposed:

$$p(\vec{x},t) = p_0(\vec{x}) + p_1(\vec{x},t) + p_2(\vec{x},t) + \dots$$
 (10)

$$\vec{v}(\vec{x},t) = \vec{v}_0(\vec{x}) + \vec{v}_1(\vec{x},t) + \vec{v}_2(\vec{x},t) + \dots$$
 (11)

where

 p_0 , \vec{v}_0 = natural pressure and Darcy velocity without wells

 p_i , \vec{v}_i = additional pressure and Darcy velocity caused by well #i

The Simplest Model for a Hydrothermal Well

Vertical borehole in an aquifer of a thickness I

Simplifications:

- All parameters (k, S, ρ_f, η) constant
- Only horizontal flow in radial direction

Basically the same solution as for the temperature drop of a downhole heat exchanger

Use variables p and \vec{v} for the additional pressure and Darcy velocity instead instead of p_i and \vec{v}_i .

The Simplest Model for a Hydrothermal Well

Downhole heat exchanger:

$$T(r,t) = -\frac{P_l}{4\pi\lambda} E_1\left(\frac{r^2}{4\kappa t}\right)$$
 (12)

Hydrothermal well:

$$p(r,t) = \frac{\frac{\rho_f Q}{l}}{4\pi \rho_f \frac{k}{\eta}} E_1 \left(\frac{r^2}{4\tilde{\kappa}t}\right) = \frac{\eta Q}{4\pi k l} E_1 \left(\frac{r^2}{4\tilde{\kappa}t}\right)$$
(13)

where

$$Q = \text{rate of injection } \left[\frac{m^3}{s}\right], Q < 0 \text{ for extraction}$$

Well Doublets

 $\tilde{\kappa} \gtrsim 1 \, \frac{\text{m}^2}{\text{s}}$ for highly permeable rocks ($k \gtrsim 0.01 \, \text{D}$) required for hydrothermal systems if the rock is fully saturated with water.

Pressure rapidly decreases around an extraction well.

Solution: Use a well doublet consisting of an injection well and an extraction well working at the same flow rate.

$$p(x,y,t) = \frac{\eta Q}{4\pi k l} \left(E_1 \left(\frac{r_i^2}{4\tilde{\kappa}t} \right) - E_1 \left(\frac{r_e^2}{4\tilde{\kappa}t} \right) \right)$$
 (14)

where $r_{i/e}$ is the distance of the considered point from the injection / extraction well.

Well Doublets

Use the approximation

$$E_1(v) \approx -\ln(v) - 0.5772 \text{ for } v \ll 1$$
 (15)

$$p(x, y, t) \approx \frac{\eta Q}{4\pi k l} \left(-\ln\left(\frac{r_i^2}{4\tilde{\kappa}t}\right) + \ln\left(\frac{r_e^2}{4\tilde{\kappa}t}\right) \right)$$
(16)

$$= \frac{\eta Q}{2\pi k l} \ln \frac{r_e}{r_i} \tag{17}$$

is independent of t (steady-state flow conditions).

Pressure and Flow Lines of a Simple Well Doublet

The Simplest Model for a Well Doublet

Limitation: In principle only valid

- for confined aquifers or
- if the horizontal distance of the wells is much smaller than the open borehole length I

Mechanical power required for maintaining the flow:

$$P = (p_i - p_e) Q (18)$$

where

 p_i = pressure at the walls of the injection well

 p_e = pressure at the walls of the extraction well

Enhanced Geothermal Systems

Hydraulic Fracturing for Increasing the Permeability

Drill a well to explore

Inject water to cause slip on faults (high water pressure pushes fractures open)

Injection extends a network of connected fractures

Inject water to sweep heat to a production well

Maximize production rate and lifetime

Source: NewEnergyNews

Enhanced Geothermal Systems

Environmental Issues related to Hydraulic Fracturing

- Large amounts of contaminated water if fracturing is supported by additional chemicals
- Fluid-induced seismicity

Mechanisms of Heat Transport in Porous Media

Solid matrix: conduction

Fluid: conduction and advection

Heat Exchange Between Fluid and Matrix

Length scale of heat conduction:

$$L(t) = \sqrt{\kappa t} \tag{19}$$

Water: $\kappa = 1.4 \times 10^{-7} \, \frac{\mathrm{m}^2}{\mathrm{s}}$

Rocks: $\kappa \approx 10^{-6} \, \frac{\text{m}^2}{\text{s}}$

Fluid and matrix rapidly adjust to the same temperature locally.

Fundamentals - Advective Heat Transport

The Heat Equation for a Fluid

Heat flux density for a fluid moving at a velocity \vec{v} :

$$\vec{q} = -\lambda \nabla T + \rho c T \vec{v}$$

$$\uparrow \qquad \uparrow \qquad \qquad \uparrow \qquad \qquad (20)$$

$$\rho c \frac{\partial T}{\partial t} = -\text{div}(\vec{q})$$

$$= \text{div}(\lambda \nabla T - \rho c T \vec{v})$$
(21)

The Heat Equation for a Porous Medium

$$(\rho_m c_m + \phi \rho_f c_f) \frac{\partial T}{\partial t} = \operatorname{div} ((\lambda_m + \phi \lambda_f) \nabla T - \rho_f c_f T \vec{v})$$
 (23)

where

$$ho_f, c_f, \lambda_f = ext{parameters of the fluid}$$
 $ho_m, c_m, \lambda_m = ext{parameters of the dry matrix (not the solid!)}$
 $ho_m = ext{porosity}$
 $vec{v} = ext{Darcy velocity}$

Effective velocity of heat advection:

$$\vec{v}_a = \frac{\rho_f c_f}{\rho_{rr} c_{rr} + \phi \rho_f c_f} \vec{v} \approx 1.5 \vec{v} \tag{2}$$

Velocities of Fluid Flow and Heat Transport

Mean interstitial velocity of the water particles

$$\vec{v}_p = \frac{\vec{v}}{\phi} \tag{25}$$

is significantly higher than the flow rate (Darcy velocity) \vec{v} .

Effective velocity of heat advection

$$\vec{v}_a = \frac{\rho_f c_f}{\rho_m c_m + \phi \rho_f c_f} \vec{v} \approx 1.5 \vec{v}$$
 (26)

is also higher than the flow rate \vec{v} , but lower than the mean interstitial velocity \vec{v}_p .

Velocities of Fluid Flow and Heat Transport

$$\vec{v}_a = \frac{\phi \rho_f c_f}{\rho_m c_m + \phi \rho_f c_f} \vec{v}_p = \frac{\vec{v}_p}{R}$$
 (27)

where

$$R = \frac{\rho_m c_m + \phi \rho_f c_f}{\phi \rho_f c_f} = 1 + \frac{\rho_m c_m}{\phi \rho_f c_f}$$
 (28)

is the coefficient of retardation.

Water circulates R times between the wells until the cold temperature front breaks through (if heat conduction is neglected).