Geothermics and Geothermal Energy Deep Open Geothermal Systems

Stefan Hergarten

Institut für Geo- und Umweltnaturwissenschaften Albert-Ludwigs-Universität Freiburg

Steps of Conversion

Thermal energy \rightarrow mechanical work: turbine; rather low efficiency due to thermodynamic limitation

Mechanical work \rightarrow electricity: generator; high efficiency

 (1)

The Thermodynamic Limitation (Carnot Cycle)

$$
\delta S = \frac{\delta Q_h}{T_h} + \frac{\delta Q_c}{T_c} \geq 0
$$

where

- δQ_h = thermal energy supplied to to the hot system
	- $<$ 0 (from the geothermal reservoir into the turbine)
	- T_h = temperature of the hot system
- δQ_c = thermal energy supplied to the cold system
	- > 0 (out of the turbine)
	- T_c = temperature of the cold system

The Thermodynamic Limitation (Carnot Cycle)

Mechanical work yielded by one cycle (conservation of energy):

$$
\delta W = -(\delta Q_h + \delta Q_c) \leq -\delta Q_h \left(1 - \frac{T_c}{T_h}\right) = -\eta_{\max} \delta Q_h \qquad (2)
$$

with the maximum efficiency

$$
\eta_{\text{max}} = \frac{T_h - T_c}{T_h} \tag{3}
$$

Consequence for the electrical, mechanical and thermal power of a geothermal power plant:

$$
P_{\rm el} < P_{\rm me} < \eta_{\rm max} P_{\rm th} \tag{4}
$$

Converting Geothermal Energy to Electricity

Maximum Efficiency of Converting Thermal Energy

General Principle: Clausius-Rankine Cycle

Main Types of Geothermal Power Plants

Dry Steam Power Plants

[Source: Office of Energy Efficiency and Renewable Energy](https://www.energy.gov/eere/geothermal/electricity-generation)

Dry Steam Power Plants

- Rather simple technology
- First geothermal production of electricity: Larderello 1904
- **•** Biggest geothermal power plant on Earth: "The Geysers", California, USA, 750 MWel
- **Limited to few locations on Earth**

Main Types of Geothermal Power Plants

Flash Steam Power Plants

[Source: Office of Energy Efficiency and Renewable Energy](https://www.energy.gov/eere/geothermal/electricity-generation)

Flash Steam Power Plants

- Most common type of geothermal power generation plants in operation today
- Reasonable efficiency only for high-enthalpy resources ($T > 200^{\circ}$ C)

Main Types of Geothermal Power Plants

Binary Cycle Power Plants

[Source: Office of Energy Efficiency and Renewable Energy](https://www.energy.gov/eere/geothermal/electricity-generation)

Binary Cycle Power Plants

- Heat transfer to a fluid with a boiling point below 100° C by a heat exchanger
- Applicable to low-enthalpy resources ($T < 200^{\circ}$ C)
- Expensive technology
- Types:

Organic Rankine Cycle (ORC): Transfer heat to an organic fluid with a low boiling point and operate the turbine with this fluid, e. g., n-perfluorpentane (C_5F_{12} , boiling point 30°C, $T_c \approx 75$ °C) Kalina cycle: Ammonia solution where the concentration of ammonia varies during the cycle; power plants in Germany at Unterhaching and Bruchsal

ORC Power Plants in Germany

Kalina Cycle Power Plants in Germany

[∗] until 2017

Principle

- Hot water is extracted at one or more wells.
- Cold water is (re)injected at another well; in most cases at the same rate as total extraction.
- Flow of water through a porous rock.

[Source: Borehole Wireline](http://borehole-wireline.com.au/2014/10/porosity-measurement/)

Major Problem

Maintaining the fluid circulation in the rock consumes a considerable part of the produced energy. $15/36$

Porosity of Rocks

Total porosity: $\phi = \frac{\text{void volume}}{\text{total volume}}$; $0 \leq \phi < 1$; often measured in percent Effective porosity: only accessible pores and volume of water that can be extracted

Typical porosity values:

[Source: GlobalSecurity.org](http://www.globalsecurity.org/military/library/policy/army/fm/5-484/Ch2.htm)

Fundamentals – Fluid Flow in Porous Media

Darcy's Law

- **Empirically found by Henry Darcy (1856).**
- Describes the average flow through a porous medium on macroscopic scales.
- Simplest form (without gravity):

$$
\vec{v}(\vec{x},t) = -\frac{k}{\eta} \nabla p(\vec{x},t) \tag{5}
$$

where

- \vec{v} = volumetric flow rate (Darcy velocity) $\left[\frac{m}{s}\right]$
- $p =$ fluid pressure [Pa]
- $k =$ hydraulic permeability $[m^2]$
- η = dynamic viscosity of the fluid [Pa s]
- Basically the same as Fourier's law of heat conduction.

The Hydraulic Permeability

Units:

 $\text{SI unit: } \mathfrak{m}^2$ Widely used unit: Darcy (D)

$$
1\,\text{D}~=~9.869\times10^{-13}\,\text{m}^2~\approx~10^{-12}\,\text{m}^2~=~1\,\mu\text{m}^2
$$

- $k = 1$ D results in a flow rate of $1 \frac{\text{cm}}{\text{s}}$ at a pressure drop of $1 \frac{\text{atm}}{\text{cm}}$ in water at 20 $^{\circ}$ C ($\eta = 10^{-3}$ Pas).
- **•** Typical values:

(6)

The Darcy Equation

Balance equation for the mass of water per bulk volume

$$
\frac{\partial \chi}{\partial t} = - \operatorname{div} (\rho_f \vec{v}) = \operatorname{div} \left(\rho_f \frac{k}{\eta} \nabla p \right)
$$

where

$$
\chi = \text{mass of fluid per bulk volume } \left[\frac{\text{kg}}{\text{m}^3}\right]
$$
\n
$$
\rho_f = \text{fluid density } \left[\frac{\text{kg}}{\text{m}^3}\right]
$$
\n
$$
\text{S} \frac{\partial \rho}{\partial t} = -\text{div}(\rho_f \vec{v}) = \text{div}\left(\rho_f \frac{k}{\eta} \nabla \rho\right) \quad \text{with} \quad S = \frac{\partial \chi}{\partial \rho} \tag{7}
$$

The Darcy Equationi Compared to the Heat Conduction Equation

Basically the same equation as the heat conduction equation with a different meaning of the parameters.

If all parameters are constant:

$$
\frac{\partial T}{\partial t} = \kappa \Delta T, \qquad \vec{q} = -\lambda \nabla T \qquad (8)
$$

$$
\frac{\partial p}{\partial t} = \tilde{\kappa} \Delta p, \qquad \vec{v} = -\frac{k}{\eta} \nabla p \qquad (9)
$$

Superposition of Solutions

The simplest form of Darcy's equation is linear.

Solutions can be superposed:

$$
p(\vec{x}, t) = p_0(\vec{x}) + p_1(\vec{x}, t) + p_2(\vec{x}, t) + ...
$$

\n
$$
\vec{v}(\vec{x}, t) = \vec{v}_0(\vec{x}) + \vec{v}_1(\vec{x}, t) + \vec{v}_2(\vec{x}, t) + ...
$$
\n(11)

where

 p_0 , \vec{v}_0 = natural pressure and Darcy velocity without wells p_i , \vec{v}_i $\;$ $\;$ $\;$ additional pressure and Darcy velocity caused by well $\#i$

The Simplest Model for a Hydrothermal Well

Vertical borehole in an aquifer of a thickness l Simplifications:

- All parameters $(k,\, {\cal S},\, \rho_f,\, \eta)$ constant
- Only horizontal flow in radial direction

Basically the same solution as for the temperature drop of a downhole heat exchanger

Use variables p and \vec{v} for the additional pressure and Darcy velocity instead instead of p_i and \vec{v}_i .

The Simplest Model for a Hydrothermal Well

Downhole heat exchanger:

$$
T(r,t) = -\frac{P_l}{4\pi\lambda} E_1\left(\frac{r^2}{4\kappa t}\right)
$$
 (12)

Hydrothermal well:

$$
p(r,t) = \frac{\frac{\rho_f Q}{l}}{4\pi \rho_f \frac{k}{\eta}} E_1\left(\frac{r^2}{4\tilde{\kappa}t}\right) = \frac{\eta Q}{4\pi kl} E_1\left(\frac{r^2}{4\tilde{\kappa}t}\right)
$$
(13)

where

$$
Q
$$
 = rate of injection $\left[\frac{m^3}{s}\right]$, $Q < 0$ for extraction

Well Doublets

 $\tilde{\kappa} \gtrapprox 1$ $\frac{\mathsf{m}^2}{\mathsf{s}}$ $\frac{5}{s}$ for highly permeable rocks $(k \gtrapprox 0.01 \text{ D})$ required for hydrothermal systems if the rock is fully saturated with water.

Pressure rapidly decreases around an extraction well.

Solution: Use a well doublet consisting of an injection well and an extraction well working at the same flow rate.

$$
p(x, y, t) = \frac{\eta Q}{4\pi kl} \left(E_1 \left(\frac{r_i^2}{4\tilde{\kappa}t} \right) - E_1 \left(\frac{r_e^2}{4\tilde{\kappa}t} \right) \right)
$$
(14)

where $r_{i/e}$ is the distance of the considered point from the injection $\!$ extraction well.

Pressure Distribution of a Well Doublet Compared to a Single Well

Well Doublets

Use the approximation

$$
E_1(v) \approx -\ln(v) - 0.5772 \quad \text{for} \quad v \ll 1 \tag{15}
$$

$$
p(x, y, t) \approx \frac{\eta Q}{4\pi kl} \left(-\ln\left(\frac{r_i^2}{4\tilde{\kappa}t}\right) + \ln\left(\frac{r_e^2}{4\tilde{\kappa}t}\right) \right)
$$
(16)

$$
= \frac{\eta Q}{2\pi kl} \ln \frac{r_e}{r_i}
$$
(17)

is independent of t (steady-state flow conditions).

Pressure and Flow Lines of a Simple Well Doublet

The Simplest Model for a Well Doublet

Limitation: In principle only valid

- for confined aquifers or
- if the horizontal distance of the wells is much smaller than the open borehole length l

Mechanical power required for maintaining the flow:

$$
P = (p_i - p_e) Q \qquad (18)
$$

where

 p_i = pressure at the walls of the injection well p_e = pressure at the walls of the extraction well

Well Triplet

 $29₁$

Enhanced Geothermal Systems

Hydraulic Fracturing for Increasing the Permeability

Drill a well to explore

Inject water to cause slip on faults (high water pressure pushes fractures open)

Injection extends a network of connected fractures

Inject water to sweep heat to a production well

Maximize production rate and lifetime

[Source: NewEnergyNews](http://newenergynews.blogspot.de/2013/10/fracking-could-crack-open-geothermal.html)

Environmental Issues related to Hydraulic Fracturing

- Large amounts of contaminated water if fracturing is supported by additional chemicals
- Fluid-induced seismicity

Heat Transport in Geothermal Systems

Mechanisms of Heat Transport in Porous Media

Solid matrix: conduction

Fluid: conduction and advection

Heat Exchange Between Fluid and Matrix

Length scale of heat conduction:

$$
L(t) = \sqrt{\kappa t}
$$

Water: $\kappa = 1.4 \times 10^{-7} \frac{\text{m}^2}{\text{s}}$ Rocks: $\kappa \approx 10^{-6} \frac{\text{m}^2}{\text{s}}$

Fluid and matrix rapidly adjust to the same temperature locally.

 (19)

The Heat Equation for a Fluid

Heat flux density for a fluid moving at a velocity \vec{v} :

The Heat Equation for a Porous Medium

$$
(\rho_m c_m + \phi \rho_f c_f) \frac{\partial T}{\partial t} = \text{div} ((\lambda_m + \phi \lambda_f) \nabla T - \rho_f c_f T \vec{v}) \qquad (23)
$$

where

- ρ_f , c_f , λ_f $\hspace{1em} = \hspace{1em}$ parameters of the fluid
- ρ_m , c_m , λ_m = parameters of the dry matrix (not the solid!)
	- ϕ = porosity
	- \vec{v} = Darcy velocity

Effective velocity of heat advection:

$$
\vec{v}_a = \frac{\rho_f c_f}{\rho_m c_m + \phi \rho_f c_f} \vec{v} \approx 1.5 \vec{v}
$$
 (24)

$$
\begin{array}{c}(24)\\ \hline 34/36\end{array}
$$

(25)

Velocities of Fluid Flow and Heat Transport

Mean interstitial velocity of the water particles

$$
\mathbf{b} = \frac{\vec{V}}{\phi}
$$

is significantly higher than the flow rate (Darcy velocity) \vec{v} . Effective velocity of heat advection

 \overline{V}

$$
\vec{v}_a = \frac{\rho_f c_f}{\rho_m c_m + \phi \rho_f c_f} \vec{v} \approx 1.5 \vec{v}
$$
 (26)

is also higher than the flow rate \vec{v} , but lower than the mean interstitial velocity \vec{v}_p .

Heat Transport in Geothermal Systems

(27)

(28)

Velocities of Fluid Flow and Heat Transport

$$
\vec{v}_a = \frac{\phi \rho_f c_f}{\rho_m c_m + \phi \rho_f c_f} \vec{v}_p = \frac{\vec{v}_p}{R}
$$

where

$$
R = \frac{\rho_m c_m + \phi \rho_f c_f}{\phi \rho_f c_f} = 1 + \frac{\rho_m c_m}{\phi \rho_f c_f}
$$

is the coefficient of retardation.

Water circulates R times between the wells until the cold temperature front breaks through (if heat conduction is neglected).