## Mass Movements Figures

### Stefan Hergarten

Institut für Geo- und Umweltnaturwissenschaften Albert-Ludwigs-Universität Freiburg



### Classification of Mass Movements According to Varnes



## Classification by the Type of Movement Fall Topple Spread Translational slide Rotational slide Flow (Debris flow) (Slide) (Slump)

Modified from: Shanmugam & Wang, Journal of Palaeogeography, 2015, doi: 10.3724/SP.J.1261.2015.00071



#### Classification by the Material

- Rock: Hard or firm mass that was intact and in its natural place before the initiation of movement.
- Soil: An aggregate of solid particles, generally of minerals and rocks, that either was transported or was formed by the weathering of rock in place. Gases or liquids filling the pores of the soil form part of the soil.
- Earth: Material in which 80% or more of the particles are smaller than 2 mm, the upper limit of sand sized particles.
- Mud: Material in which 80% or more of the particles are smaller than 0.06 mm, the upper limit of silt sized particles.
- Debris: Contains a significant proportion of coarse material; 20% to 80% of the particles are larger than 2 mm.



#### Worldwide Death Toll Since 1900





#### Worldwide Death Toll Since 1900



### Examples From the Alps



#### Rockslide at Randa (Matter Valley, 1991, $V \approx 30 \text{ mil. m}^3$ )



Source: Wikipedia



Foto: S. Hergarten

### Examples From the Alps



### Flims Rockslide (9500 years b.p., $V \ge 8 \text{ km}^3$ )



Photo: K. Stüwe & R. Homberger (www.alpengeologie.org)

### Examples From the Alps



### Flims Rockslide (9500 years b.p., $V \ge 8 \text{ km}^3$ )



Photo: K. Stüwe & R. Homberger (www.alpengeologie.org)

### Regional Examples



### Wutach Gorge (2017)



Photo: M. Geyer (www.geotourist-freiburg.de)

### Regional Examples



### Freiburg, Main Railway Track (2016)



Photo: T. Kunz (Badische Zeitung)



#### The Finite Difference Method



- Cover the domain by a regular lattice.
- Consider difference quotients at each node.



#### The Finite Element Method



- Subdivide the domain into simple elements, mostly triangles.
- Assume a pre-defined shape of the solution in each element, e.g., linear.
- Minimize the potential energy (elastic deformation + gravity) instead of solving the Navier-Cauchy equations directly.

### Numerical Solution of the Navier-Cauchy Equations



#### Example of a Finite Element Simulation



### Numerical Solution of the Navier-Cauchy Equations



#### Example of a Finite Element Simulation



### Numerical Solution of the Navier-Cauchy Equations



#### Example of a Finite Element Simulation





#### Maximum Stable Slope Angle for Translational Slides



# FREBURG

### The Fahrboeschung Concept

- Dates back to Albert Heim (1932).
- Mostly applied to rockfalls and rock avalanches, but also to mud flows and debris flows.
- Ratio of fall height H and runout length L.



Source: de Graaf & Bowman, 12<sup>th</sup> International Symposium on Landslides, 2016

### Fahrboeschung and Talweg



#### Dependence of Fahrboeschung on Volume



### Fahrboeschung and Talweg



### Increase in Fahrboeschung due to Deviation from Talweg Direction



19/22



### Coefficients of Restitution for Different Materials

| Soiltype                                                        | General description of the underground                              | mean R <sub>n</sub> value | R <sub>n</sub> value range |
|-----------------------------------------------------------------|---------------------------------------------------------------------|---------------------------|----------------------------|
| 0                                                               | River, or swamp, or material in which a rock could                  | 0                         | 0                          |
|                                                                 | penetrate completely                                                |                           |                            |
| 1                                                               | Fine soil material (depth > ~100 cm)                                | 0.23                      | 0.21 - 0.25                |
| 2                                                               | Fine soil material (depth < ~100 cm), or sand/gravel                | 0.28                      | 0.25 - 0.31                |
|                                                                 | mix in the valley                                                   |                           |                            |
| 3                                                               | Scree ( $\emptyset < \sim 10$ cm), or medium compact soil with      | 0.33                      | 0.30 - 0.36                |
|                                                                 | small rock fragments, or forest road                                |                           |                            |
| 4                                                               | Talus slope ( $\emptyset > \sim 10$ cm), or compact soil with large | 0.38                      | 0.34 - 0.42                |
|                                                                 | rock fragments                                                      |                           |                            |
| 5                                                               | Bedrock with thin weathered material or soil cover                  | 0.43                      | 0.39 - 0.47                |
| 6                                                               | Bedrock                                                             | 0.53                      | 0.48 - 0.58                |
| 7                                                               | Asphalt road                                                        | 0.35                      | 0.32 - 0.39                |
| Source: Dorren, Rockyfor3D (v5.2) revealed, ecorisQ paper, 2016 |                                                                     |                           |                            |





#### Measuring Coefficients of Restitution in Laboratory



### Models for Granular Flow



### Coordinate Systems

