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Fundamentals

Functions of More Than One Variable

Almost all processes relevant in geosciences are described by variables
varying in time and space. The spatial component is a scalar in case
of a one-dimensional description and a vector in case of a two- or
three-dimensional description.

Examples:
T (~x , t) as the temperature
p(~x , t) as the fluid pressure in a reservoir
ρ(~x , t) as the density in a gas
~v(~x , t) as the flow velocity in a fluid

Spatial interactions often refer to the spatial variation in the variables.

Examples:

Heat conduction is driven by spatial differences in temperature.
Fluid flow is driven by spatial differences in pressure.
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Fundamentals

Partial Derivatives

If a function u depends on more than one variable, e. g., u(x1, x2, x3, t)
(or shorter u(~x , t)), the derivative with respect to one of the variables
(while the others are constant) is called partial derivative.

Partial derivatives are written with the symbol ∂, e. g.,

∂

∂x1
u(~x , t),

∂

∂x2
u(~x , t),

∂

∂x3
u(~x , t), and

∂

∂t
u(~x , t).

Partial derivatives are computed by assuming that the other variables
are constant.
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Fundamentals

Examples of Partial Derivatives

Density of an ideal gas

ρ(p,T ) =
M

R

p

T
with

M = molar mass
R = gas constant

∂

∂p
ρ(p,T ) = ,

∂

∂T
ρ(p,T ) =

One-dimensional harmonic wave

u(x , t) = A sin (ωt − kx) with
A = amplitude
ω = angular frequency
k = wave number

∂

∂x
u(x , t) = ,

∂

∂t
u(x , t) =
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Fundamentals

The Gradient

The partial derivatives with respect to the spatial coordinates are often
subsumed in a vector

gradu(~x , t) = ∇u(~x , t) =

 ∂
∂x1

u(~x , t)
∂
∂x2

u(~x , t)
∂
∂x3

u(~x , t)


Examples:

H(x1, x2) = x21 − x22 , ∇H(x1, x2) =

 
H(x1, x2) = x1 x2, ∇H(x1, x2) =

 
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Fundamentals

Properties of the Gradient

∇u(~x) is normal to the lines (in 2D) or the surfaces (in 3D) where
u(~x) is constant.

∇u(~x) points in direction of steepest increase of u(~x).

The length of ∇u(~x) is the slope of u(~x) in direction of steepest
increase.

What Is a Partial Differential Equation?

A partial differential equation (PDE) is an equation for an unknown
function depending on more than variable involving partial derivatives.

A differential equation for a function of only one variable is called ordinary
differential equation (ODE).
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Examples of Partial Differential Equations

The One-Dimensional Advection Equation

∂

∂t
u(x , t) = −v ∂

∂x
u(x , t)

The Equation of Continuity (mass conservation) in a Fluid

∂

∂t
ρ(~x , t) = −div (ρ(~x , t)~v(~x , t))

= − ∂

∂x1
(ρ(~x , t) v1(~x , t))− ∂

∂x2
(ρ(~x , t) v2(~x , t))

− ∂

∂x3
(ρ(~x , t) v3(~x , t))
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Examples of Partial Differential Equations

The Heat Conduction Equation

Simplest version (1D with constant parameters):

∂

∂t
T (x , t) = κ

∂2

∂x2
T (x , t)

General version (3D):

ρc
∂

∂t
T (~x , t) = div (λ∇T (~x , t))

=
∂

∂x1

(
λ

∂

∂x1
T (~x , t)

)
+

∂

∂x2

(
λ

∂

∂x2
T (~x , t)

)
+

∂

∂x3

(
λ

∂

∂x3
T (~x , t)

)
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Examples of Partial Differential Equations

The Navier-Stokes Equations of a Viscous Fluid (without gravity)

ρ

(
∂

∂t
~v(~x , t) + (~v(~x , t) · ∇)~v(~x , t)

)
= −∇p(~x , t) + η∆~v(~x , t)

with

(~v(~x , t) · ∇)~v(~x , t) = v1(~x , t)
∂

∂x1
~v(~x , t) + v2(~x , t)

∂

∂x2
~v(~x , t)

+v3(~x , t)
∂

∂x3
~v(~x , t)

∆~v(~x , t) =
∂2

∂x21
~v(~x , t) +

∂2

∂x22
~v(~x , t) +

∂2

∂x23
~v(~x , t)
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Numerics of Partial Differential Equations

Treatment of the Time Coordinate

The procedure is basically the same as for the time in ordinary differential
equations:

If second-order derivatives occur, the first-order derivatives must be
introduced as separate variables.

Approximate solutions are computed step by step (in steps of length
δt), starting from the initial time t0.

The time derivative is approximated by

∂

∂t
u(~x , t) ≈ u(~x , t + δt)− u(~x , t)

δt
.
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Numerics of Partial Differential Equations

Treatment of the Time Coordinate

All schemes (explicit and fully implicit Euler, mixed, e. g.,
Crank-Nicholson) can be used.

If the explicit Euler scheme is used, the solution u(~x , t + δt) can be
directly obtained from u(~x , t) by computing partial derivatives of
u(~x , t) with respect to the spatial coordinates ~x .

For all implicit schemes, a partial differential equation with respect to
the spatial coordinates ~x remains to be solved in each timestep.
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Numerics of Partial Differential Equations

The Finite-Difference Method in One Dimension

One-dimensional case: only one spatial coordinate x (and time)

First step:

Discrete points x1, x2, . . . , xn are defined on the considered part of
the x-axis (from the left-hand boundary to the right-hand boundary).

These points are called nodes and are the points where an
approximate solution will be computed.

The nodes may be equidistant (having all the same distance δx) or
not.
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Numerics of Partial Differential Equations

The Finite-Difference Method in One Dimension

Second step: The partial derivatives ∂
∂x u(x , t) are approximated by

difference quotients.

Right-handed difference quotient:

∂

∂x
u(x , t) ≈ u(x + δx , t)− u(x , t)

δx

Left-handed difference quotient:

∂

∂x
u(x , t) ≈ u(x , t)− u(x − δx , t)

δx
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Numerics of Partial Differential Equations

The Finite-Difference Method in One Dimension

Central (symmetric) difference quotient:

∂

∂x
u(x , t) ≈ u(x + δx , t)− u(x − δx , t)

2δx

or
∂

∂x
u(x , t) ≈

u(x + δx
2 , t)− u(x − δx

2 , t)

δx
or

∂

∂x
u(x + δx

2 , t) ≈ u(x + δx , t)− u(x , t)

δx
or

∂

∂x
u(x − δx

2 , t) ≈ u(x , t)− u(x − δx , t)

δx

Only the first version can be applied directly, the others are only useful for
combining them to second-order derivatives.
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Numerics of Partial Differential Equations

The Finite-Difference Method in One Dimension

The accuracy of all these difference quotients decreases with
increasing δx .

As long as there is no preferred direction, right-hand and left-hand
difference quotients are equivalent.

Central difference quotients provide a higher accuracy than the one
sided versions.
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Balance Equations (mass, energy, . . . )

General Concept

Consider the amount of anything that is worth keeping track of (mass,
energy, . . . ) in a volume

rate of change of the amount stored within the volume

=

amount per time entering at the boundaries
-

amount per time leaving at the boundaries

+

amount per time produced within the volume
-

amount per time removed within the volume
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Balance Equations (mass, energy, . . . )

Density and Flux Density

Density u(~x , t) = amount per volume

Flux density ~q(~x , t) = amount passing a surface per time and surface area

~q is a vector, so that the amount per time passing a (small) surface of
size A with a unit normal vector ~n is ~q · ~nA.
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Balance Equations (mass, energy, . . . )

The Equation of Continuity

Balance of a the amount contained in a cube:

d

d

d

x1

x2

x3

d

d

d

x1

x2

x3

d

d

d

x1

x2

x3

∂u

∂t
d3 = q1d

2 − q1d
2 + q2d

2 − q2d
2 + q3d

2 − q3d
2 + Q d3

where Q is the rate of production (amount per time and volume)
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Balance Equations (mass, energy, . . . )

The General Balance Equation

∂

∂t
u(~x , t) = − div~q(~x , t) + Q(~x , t)

where

div~q(~x , t) =
∂

∂x1
q1(~x , t) +

∂

∂x2
q2(~x , t) +

∂

∂x3
q3(~x , t)

= divergence of the flux density ~q
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Balance Equations (mass, energy, . . . )

The Equation of Advection

Assume that the considered amount moves at a given velocity ~v(~x , t):

~q(~x , t) = u(~x , t)~v(~x , t)

∂

∂t
u(~x , t) = − div (u(~x , t)~v(~x , t)) + Q(~x , t)

In 1D:
∂

∂t
u(x , t) = − ∂

∂x
(u(x , t)~v(x , t)) + Q(x , t)

The equation of advection is of first order in both time and space
(hyperbolic differential equation).
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Balance Equations (mass, energy, . . . )

The Equation of Advection

Simplest version: ~v(~x , t) = const., Q(~x , t) = 0:

∂

∂t
u(~x , t) = − ~v · ∇u(~x , t)

In 1D:
∂

∂t
u(x , t) = − v

∂

∂x
u(x , t)
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Balance Equations (mass, energy, . . . )

The Diffusion Equation

1 Flux follows the direction of steepest descent of the density u(~x , t).

2 The flux density is proportional to the decrease of density per length.

~q(~x , t) = − D∇u(~x , t) = − D

 ∂
∂x1

u(~x , t)
∂
∂x2

u(~x , t)
∂
∂x3

u(~x , t)


with

D = diffusivity (coefficient of diffusion) [m
2

s ]
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Balance Equations (mass, energy, . . . )

The Diffusion Equation

Insert flux density into the balance equation:

∂

∂t
u(~x , t) = −div~q(~x , t) + Q(~x , t)

= div (D∇u(~x , t)) + Q(~x , t)

In 1D:

∂

∂t
u(x , t) =

∂

∂x

(
D

∂

∂x
u(x , t)

)
+ Q(x , t)

The diffusion equation is of first order in time and of second order in space
(parabolic differential equation).
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Balance Equations (mass, energy, . . . )

The Diffusion Equation

Simplest version: D = const., Q(~x , t) = 0:

∂

∂t
u(~x , t) = D div∇u(~x , t)

= D

(
∂2

∂x21
u(~x , t) +

∂2

∂x22
u(~x , t) +

∂2

∂x23
u(~x , t)

)
= D ∆u(~x , t)

where ∆ = ∂2

∂x21
+ ∂2

∂x22
+ ∂2

∂x23
is the Laplace operator.

In 1D:

∂

∂t
u(~x , t) = D

∂2

∂x2
u(x , t)
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Fundamentals

Initial Conditions and Boundary Conditions

Time is distinct from the spatial coordinates as it is directed.

For a unique solution, partial differential equations require

Initial conditions: The solution for all points ~x of the domain at a
time t0 must be given.

Boundary conditions: The solution (or, e. g., its derivatives) must be
given at (least at a part of) the boundary of the domain for all
times t > t0.

25 / 38



Numerics of Partial Differential Equations

The Finite-Difference Method in Two Dimensions

Two-dimensional case: Spatial coordinates x1 and x2.

First step: The domain is covered by a lattice where the lines are parallel
to the coordinate axes.
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Numerics of Partial Differential Equations

The Finite-Difference Method in Two Dimensions

Second step: The partial derivatives ∂
∂x1

u(x , t) and ∂
∂x2

u(x , t) are
approximated by difference quotients.

Right-handed difference quotients:

∂

∂x1
u(x1, x2, t) ≈ u(x1 + δx , x2, t)− u(x1, x2, t)

δx

∂

∂x2
u(x1, x2, t) ≈ u(x1, x2 + δx , t)− u(x1, x2, t)

δx

Left-handed difference quotients:

∂

∂x1
u(x1, x2, t) ≈ u(x1, x2, t)− u(x1 − δx , x2, t)

δx

∂

∂x2
u(x1, x2, t) ≈ u(x1, x2, t)− u(x1, x2 − δx , t)

δx
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Numerics of Partial Differential Equations

The Finite-Difference Method in Two Dimensions

Central difference quotients:

∂

∂x1
u(x1, x2, t) ≈ u(x1 + δx , x2, t)− u(x1 − δx , x2, t)

2δx

∂

∂x1
u(x1, x2, t) ≈

u(x1 + δx
2 , x2, t)− u(x1 − δx

2 , x2, t)

δx

∂

∂x2
u(x1, x2, t) ≈ u(x1, x2 + δx , t)− u(x1, x2 − δx , t)

2δx

∂

∂x2
u(x1, x2, t) ≈

u(x1, x2 + δx
2 , t)− u(x1, x2 − δx

2 , t)

δx

and all other variants discussed in the one-dimensional case
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The Heat Equation

The Energy Balance

∂

∂t
ε(~x , t) = − div~q(~x , t) + Q(~x , t)

where

ε(~x , t) = energy density [ J
m3 ]

~q(~x , t) = heat flux density [ W
m2 ]

Q(~x , t) = rate of production of thermal energy per volume [ W
m3 ]
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The Heat Equation

The Specific Heat Capacity

The specific heat capacity

c =
1

ρ

∂ε

∂T

describes the change in thermal energy with temperature.

∂

∂t
ε(~x , t) = ρc

∂

∂t
T (~x , t) = − div~q(~x , t) + Q(~x , t)

Water: c = 4180 J
kg K

Rocks: c = 800–1000 J
kg K
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The Heat Equation

The Three Mechanisms of Heat Transport

Heat conduction: Driven by spatial differences in temperature.

Advective transport: Heat is carried by a moving (flowing) medium.

~q(~x , t) = ε(~x , t)~v = ρc T (~x , t)~v

Radiation: Does not require a medium, but is only significant at very high
temperatures.
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The Heat Equation

Fourier’s Law of Heat Conduction (1822)

1 Heat flux follows the direction of steepest descent of the temperature
field T (~x , t).

2 The heat flux density is proportional to the decrease of temperature
per length.

~q(~x , t) = −λ∇T (~x , t) = − λ

 ∂
∂x1

T (~x , t)
∂
∂x2

T (~x , t)
∂
∂x3

T (~x , t)


with

λ = thermal conductivity [ W
mK ]
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The Heat Equation

Typical Values of λ

Material λ [ W
mK ] Rocks λ [ W

mK ]
diamond 2300 granite 2.8

iron 80 basalt 2
quartz 1.4 dolomite 2.5
sand 0.6 limestone 2.5

expanded polystyrene 0.033 sandstone 2.5
water 0.6 shale 2

air 0.026 widely used value 2.5
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The Heat Equation

The Full Heat Equation (conduction, advection, production)

Energy balance + Fourier’s law + advective heat flux

ρc
∂

∂t
T (~x , t) = div (λ∇T (~x , t)− ρcT (~x , t)~v) + Q
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The Heat Equation

The Thermal Diffusivity

If ρ, c , and λ are constant (mass balance implies div~v = 0 then), the heat
equation can be simplified to

∂

∂t
T (~x , t) = κ∆T (~x , t)− ~v · ∇T (~x , t) +

Q

ρc

= κ

(
∂2

∂x21
T (~x , t) +

∂2

∂x22
T (~x , t) +

∂2

∂x23
T (~x , t)

)
−~v · ∇T (~x , t) +

Q

ρc
with the thermal diffusivity

κ =
λ

ρc

Water: κ = 1.4× 10−7 m2

s

Rocks: κ ≈ 10−6 m2

s ≈ 30 m2

a
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The Heat Equation

Boundary Conditions

Boundary conditions for a second-order (concerning space) differential
equation concern the values or their derivatives (or a combination of both).

Dirichlet boundary conditions define the temperatures at the boundaries:

T (~x , t) = Tb

Interpretation: System is coupled to a big reservoir held a a given
temperature.
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The Heat Equation

Boundary Conditions

(Von) Neumann boundary conditions define the conductive heat flux
density across the boundaries:

−λ∇T (~x , t) · ~n = qb

where ~n is the outer unit normal vector on the surface.

In 1D:

±λ ∂
∂x

T (x , t) = qb

Homogeneous (von) Neumann boundary condition: qb = 0

∇T (~x , t) · ~n = 0 (2D/3D),
∂

∂x
T (x , t) = 0 (1D)
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The Heat Equation

Boundary Conditions

Mixed boundary conditions define a combination of temperature and
temperature gradient normal to the surface.

Examples:

Total (conductive + advective) heat lux density across the
boundary is given:

(−λ∇T (~x , t) + ρcT (~x , t)~v) · ~n = qb

Radiating surface (without advection):

−λ∇T (~x , t) · ~n = σT (~x , t)4
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