Geothermics and Geothermal Energy Deep Open Geothermal Systems

Stefan Hergarten

Institut für Geo- und Umweltnaturwissenschaften Albert-Ludwigs-Universität Freiburg

Steps of Conversion

Thermal energy \rightarrow mechanical work: turbine; rather low efficiency due to thermodynamic limitation

Mechanical work \rightarrow electricity: generator; high efficiency

Converting Geothermal Energy to Electricity

The Thermodynamic Limitation (Carnot Cycle)

$$\delta S = \frac{\delta Q_h}{T_h} + \frac{\delta Q_c}{T_c} \ge 0 \tag{1}$$

where

- $\delta {\it Q}_{\it h}~=~$ thermal energy supplied to to the hot system
 - < 0 (from the geothermal reservoir into the turbine)
 - T_h = temperature of the hot system
- δQ_c = thermal energy supplied to the cold system
 - > 0 (out of the turbine)
 - T_c = temperature of the cold system

The Thermodynamic Limitation (Carnot Cycle)

Mechanical work yielded by one cycle (conservation of energy):

$$\delta W = -\left(\delta Q_h + \delta Q_c\right) \leq -\delta Q_h \left(1 - \frac{T_c}{T_h}\right) = -\eta_{\max} \delta Q_h \quad (2)$$

with the maximum efficiency

$$\eta_{\max} = \frac{T_h - T_c}{T_h} \tag{3}$$

Consequence for the electrical, mechanical and thermal power of a geothermal power plant:

$$P_{
m el}~<~P_{
m me}~<~\eta_{
m max}\,P_{
m th}$$

Converting Geothermal Energy to Electricity

Maximum Efficiency of Converting Thermal Energy

Main Types of Geothermal Power Plants

General Principle: Clausius-Rankine Cycle

Main Types of Geothermal Power Plants

FREBURG

Dry Steam Power Plants

Source: Office of Energy Efficiency and Renewable Energy

Dry Steam Power Plants

- Rather simple technology
- First geothermal production of electricity: Larderello 1904
- $\bullet\,$ Biggest geothermal power plant on Earth: "The Geysers", California, USA, 750 $\rm MW_{el}$
- Limited to few locations on Earth

Main Types of Geothermal Power Plants

FREBURG

Flash Steam Power Plants

Source: Office of Energy Efficiency and Renewable Energy

Flash Steam Power Plants

- Most common type of geothermal power generation plants in operation today
- Reasonable efficiency only for high-enthalpy resources ($T > 200^{\circ}$ C)

Main Types of Geothermal Power Plants

Binary Cycle Power Plants

Source: Office of Energy Efficiency and Renewable Energy

Binary Cycle Power Plants

- Heat transfer to a fluid with a boiling point below 100°C by a heat exchanger
- Applicable to low-enthalpy resources ($T < 200^{\circ}$ C)
- Expensive technology
- Types:

Organic Rankine Cycle (ORC): Transfer heat to an organic fluid with a low boiling point and operate the turbine with this fluid, e.g., n-perfluorpentane (C_5F_{12} , boiling point 30°C, $T_c \approx 75^{\circ}$ C) Kalina cycle: Ammonia solution where the concentration of ammonia varies during the cycle; power plants in Germany at Unterhaching and Bruchsal

ORC Power Plants in Germany

Location	Depth [m]	T [°C]	$Q\left[\frac{1}{s}\right]$	$P_{\rm th}$ [MW]	$P_{\rm el}$ [MW]
Dürrnhaar	4114	130	135		5.5
Grünwald	4083	130 150		50	4.5
Insheim	3650	165 85			4.8
Kirchstockach	3750	139	145		5.5
Landau	3340	155	70		3.8
Neustadt-Glewe	2455	99	35	5.5	0.23
Sauerlach	4480	143	110		4.0
Simbach/Braunau	1942	80	74	7	0.2
Traunreut	4500	118	130		5.0(?)

Kalina Cycle Power Plants in Germany

Location	Depth [m]	T [°C]	$Q\left[\frac{1}{s}\right]$	$P_{\rm th}$ [MW]	P _{el} [MW]
Unterhaching	3350	122	150	38	3.36*
Bruchsal	2542	120	24	5.5	0.55

* until 2017

Principle

- Hot water is extracted at one or more wells.
- Cold water is (re)injected at another well; in most cases at the same rate as total extraction.
- Flow of water through a porous rock.

Source: Borehole Wireline

Major Problem

Maintaining the fluid circulation in the rock consumes a considerable part of the produced energy. $$_{15/}$$

Porosity of Rocks

Total porosity: $\phi = \frac{\text{void volume}}{\text{total volume}}$; $0 \le \phi < 1$; often measured in percent Effective porosity: only accessible pores and volume of water that can be extracted

Typical porosity values:

	$\phi_{\sf tot}$ [%]	$\phi_{\rm eff}$ [%]
equally sized spheres	26–48	26–48
soil	55	40
clay	50	2
sand	25	22
limestone	20	18
sandstone (semiconsolidated)	11	6
granite	0.1	0.09

Source: GlobalSecurity.org

Fundamentals - Fluid Flow in Porous Media

FREBURG

(5)

Darcy's Law

- Empirically found by Henry Darcy (1856).
- Describes the average flow through a porous medium on macroscopic scales.
- Simplest form (without gravity):

$$ec{v}(ec{x},t) = -rac{k}{\eta}
abla p(ec{x},t)$$

where

- \vec{v} = volumetric flow rate (Darcy velocity) $\left[\frac{m}{s}\right]$
- p = fluid pressure [Pa]
- k = hydraulic permeability [m²]
- $\eta = dynamic viscosity of the fluid [Pas]$
- Basically the same as Fourier's law of heat conduction.

The Hydraulic Permeability

• Units:

SI unit: m² Widely used unit: Darcy (D)

$$1 \text{ D} = 9.869 \times 10^{-13} \text{ m}^2 \approx 10^{-12} \text{ m}^2 = 1 \, \mu \text{m}^2$$

- k = 1 D results in a flow rate of $1 \frac{\text{cm}}{\text{s}}$ at a pressure drop of $1 \frac{\text{atm}}{\text{cm}}$ in water at 20°C ($\eta = 10^{-3} \text{ Pas}$).
- Typical values:

Medium	<i>k</i> [D]	Medium	<i>k</i> [D]
gravel	10-1000	limestone	$10^{-6} - 100$
sand	0.01-10	fractured igneous rocks	$10^{-6} - 10$
silt	$10^{-3} - 0.1$	unfractured igneous rocks	$10^{-9} - 10^{-6}$

(6)

The Darcy Equation

Balance equation for the mass of water per bulk volume

$$\frac{\partial \chi}{\partial t} = -\operatorname{div}\left(\rho_f \vec{v}\right) = \operatorname{div}\left(\rho_f \frac{k}{\eta} \nabla p\right)$$

where

The Darcy Equationi Compared to the Heat Conduction Equation

Basically the same equation as the heat conduction equation with a different meaning of the parameters.

heat conduction	Т	λ	ho c	$\kappa = \frac{\lambda}{ ho c}$
Darcy flow	р	$\rho_f \frac{k}{\eta}$	S	$\tilde{\kappa} = rac{ ho_f k}{\eta S}$

If all parameters are constant:

$$\frac{\partial T}{\partial t} = \kappa \Delta T, \qquad \vec{q} = -\lambda \nabla T$$
(8)
$$\frac{\partial p}{\partial t} = \tilde{\kappa} \Delta p, \qquad \vec{v} = -\frac{k}{\eta} \nabla p$$
(9)

Superposition of Solutions

The simplest form of Darcy's equation is linear.

Solutions can be superposed:

$$p(\vec{x}, t) = p_0(\vec{x}) + p_1(\vec{x}, t) + p_2(\vec{x}, t) + \dots$$
(10)
$$\vec{v}(\vec{x}, t) = \vec{v}_0(\vec{x}) + \vec{v}_1(\vec{x}, t) + \vec{v}_2(\vec{x}, t) + \dots$$
(11)

where

 $p_0, \vec{v}_0 =$ natural pressure and Darcy velocity without wells $p_i, \vec{v}_i =$ additional pressure and Darcy velocity caused by well #i

The Simplest Model for a Hydrothermal Well

Vertical borehole in an aquifer of a thickness *I* Simplifications:

- All parameters (k, S, ρ_f , η) constant
- Only horizontal flow in radial direction

Basically the same solution as for the temperature drop of a downhole heat exchanger

Use variables p and \vec{v} for the additional pressure and Darcy velocity instead instead of p_i and \vec{v}_i .

The Simplest Model for a Hydrothermal Well

Downhole heat exchanger:

$$T(r,t) = -\frac{P_l}{4\pi\lambda} E_1\left(\frac{r^2}{4\kappa t}\right)$$
(12)

Hydrothermal well:

$$p(r,t) = \frac{\frac{\rho_f Q}{l}}{4\pi\rho_f \frac{k}{\eta}} E_1\left(\frac{r^2}{4\tilde{\kappa}t}\right) = \frac{\eta Q}{4\pi k l} E_1\left(\frac{r^2}{4\tilde{\kappa}t}\right)$$
(13)

where

$$Q$$
 = rate of injection $\left[\frac{m^3}{s}\right]$, $Q < 0$ for extraction

Well Doublets

 $\tilde{\kappa} \gtrsim 1 \frac{\text{m}^2}{\text{s}}$ for highly permeable rocks ($k \gtrsim 0.01 \text{ D}$) required for hydrothermal systems if the rock is fully saturated with water.

Pressure rapidly decreases around an extraction well.

Solution: Use a well doublet consisting of an injection well and an extraction well working at the same flow rate.

$$p(x, y, t) = \frac{\eta Q}{4\pi k l} \left(E_1 \left(\frac{r_i^2}{4\tilde{\kappa}t} \right) - E_1 \left(\frac{r_e^2}{4\tilde{\kappa}t} \right) \right)$$
(14)

where $r_{i/e}$ is the distance of the considered point from the injection / extraction well.

Pressure Distribution of a Well Doublet Compared to a Single Well

Well Doublets

Use the approximation

$$E_1(v) \approx -\ln(v) - 0.5772 \quad \text{for} \quad v \ll 1$$
 (15)

$$\begin{aligned}
\Psi \\
p(x, y, t) \approx \frac{\eta Q}{4\pi k l} \left(-\ln\left(\frac{r_i^2}{4\tilde{\kappa}t}\right) + \ln\left(\frac{r_e^2}{4\tilde{\kappa}t}\right) \right) & (16) \\
&= \frac{\eta Q}{2\pi k l} \ln\frac{r_e}{r_i} & (17)
\end{aligned}$$

is independent of t (steady-state flow conditions).

Pressure and Flow Lines of a Simple Well Doublet

The Simplest Model for a Well Doublet

Limitation: In principle only valid

- for confined aquifers or
- if the horizontal distance of the wells is much smaller than the open borehole length /

Mechanical power required for maintaining the flow:

$$P = (p_i - p_e) Q \tag{18}$$

where

 p_i = pressure at the walls of the injection well p_e = pressure at the walls of the extraction well

Well Triplet

Enhanced Geothermal Systems

Hydraulic Fracturing for Increasing the Permeability

Drill a well to explore

Inject water to cause slip on faults (high water pressure pushes fractures open)

Injection extends a network of connected fractures

Inject water to sweep heat to a production well

Maximize production rate and lifetime

Source: NewEnergyNews

Environmental Issues related to Hydraulic Fracturing

- Large amounts of contaminated water if fracturing is supported by additional chemicals
- Fluid-induced seismicity

Heat Transport in Geothermal Systems

Mechanisms of Heat Transport in Porous Media

Solid matrix: conduction

Fluid: conduction and advection

Heat Exchange Between Fluid and Matrix

Length scale of heat conduction:

$$L(t) = \sqrt{\kappa t}$$

Water:
$$\kappa = 1.4 \times 10^{-7} \frac{\text{m}}{\text{s}}$$

Rocks: $\kappa \approx 10^{-6} \frac{\text{m}^2}{\text{s}}$

Fluid and matrix rapidly adjust to the same temperature locally.

(19)

The Heat Equation for a Fluid

Heat flux density for a fluid moving at a velocity \vec{v} :

24

The Heat Equation for a Porous Medium

$$(\rho_m c_m + \phi \rho_f c_f) \frac{\partial T}{\partial t} = \operatorname{div} \left((\lambda_m + \phi \lambda_f) \nabla T - \rho_f c_f T \vec{v} \right) \quad (23)$$

where

 $\rho_f, c_f, \lambda_f = \text{parameters of the fluid}$ $\rho_m, c_m, \lambda_m = \text{parameters of the dry matrix (not the solid!)}$ $\phi = \text{porosity}$ $\vec{v} = \text{Darcy velocity}$

Effective velocity of heat advection:

$$ec{v}_{a} = rac{
ho_{f}c_{f}}{
ho_{m}c_{m}+\phi
ho_{f}c_{f}} ec{v} pprox 1.7 ec{v}$$

(25)

Velocities of Fluid Flow and Heat Transport

Mean interstitial velocity of the water particles

$$p = \frac{\vec{v}}{\phi}$$

is significantly higher than the flow rate (Darcy velocity) \vec{v} . Effective velocity of heat advection

 \vec{v}

$$\vec{v}_a = \frac{\rho_f c_f}{\rho_m c_m + \phi \rho_f c_f} \vec{v} \approx 1.7 \vec{v}$$
(26)

is also higher than the flow rate \vec{v} , but lower than the mean interstitial velocity \vec{v}_p .

Heat Transport in Geothermal Systems

(27)

(28)

Velocities of Fluid Flow and Heat Transport

$$\vec{v}_a = rac{\phi
ho_f c_f}{
ho_m c_m + \phi
ho_f c_f} \vec{v}_p = rac{\vec{v}_p}{R}$$

where

$$R = \frac{\rho_m c_m + \phi \rho_f c_f}{\phi \rho_f c_f} = 1 + \frac{\rho_m c_m}{\phi \rho_f c_f}$$

is the coefficient of retardation.

Water circulates R times between the wells until the cold temperature front breaks through (if heat conduction is neglected).