Hydrogeology Resistivity Methods

Jakob Wilk

Institut für Geo- und Umweltnaturwissenschaften Albert-Ludwigs-Universität Freiburg

Basic Idea

Measure electrical conductivities or resistivities using artificial fields.

Main Fields of Application

- Delimiting lithologic units and fault zones
- Determining depth and properties of aquifers
- Monitoring the impermeability of dams
- Exploration and monitoring of residual waste sites
- Monitoring the spread of pollutants
- Detecting potential slip surfaces (e.g., clay layers) in landslide-prone slopes

Electric Field and Potential

• An electric field \vec{E} exerts a force

$$\vec{F} = q \vec{E}$$

on a charge q.

• In absence of time-dependent magnetic fields, the electric field can be represented by the gradient of the electric potential *U*:

$$\vec{E}(\vec{x}) = -\nabla U(\vec{x}) = -\begin{pmatrix} \frac{\partial}{\partial x_1} U(\vec{x}) \\ \frac{\partial}{\partial x_2} U(\vec{x}) \\ \frac{\partial}{\partial x_3} U(\vec{x}) \end{pmatrix}$$
$$\downarrow$$
$$\vec{F}(\vec{x}) = -q \nabla U(\vec{x})$$

- Named after Georg Simon Ohm, 1789–1854.
- The constant of proportionality σ is a property of the material and is denoted electrical conductivity.

Conductivity and Resistivity

Conductivity σ $[\sigma] = \frac{1}{\Omega m} = \frac{S}{m}, \ \Omega = Ohm = \frac{V}{A}, \ S = Siemens = \frac{A}{V}$ Resistivity $\rho = \frac{1}{\sigma}$ $[\rho] = \Omega m$

Conductance and resistance refer to objects and not to materials and are measured in S and Ω , respectively.

(Semi)Conductors	$ ho~[\Omega m]$	Nonconductors	$ ho ~[\Omega m]$
copper	$1.7 imes10^{-8}$	porcelain	10 ¹²
iron	10 ⁻⁷	rubber	10 ¹³
silicium	2300	silica glass	$7.5 imes10^{17}$

Conductivity / Resistivity of Rocks and Soils

- Rock forming minerals have very low conductivities.
- Many ores have considerably higher conductivities.
- The conductivity of pure water is rather low, but strongly increases by solving salts.

Solution	$ ho$ [Ω m]
distilled water	10000
ocean water	0.5
10% copper sulfate	0.3
10 % sodium chlorite	0.08
10 % sulfuric acid	0.025
10 % hydrochloric acid	0.015

Conductivity / Resistivity of Rocks and Soils

Thus, the total conductivity of a rock or a soil strongly depends on

- o porosity
- water saturation
- connectivity of the pore space
- pureness of the contained water (in return depends on the properties of the rock/soil)

Question

Which are the main dependencies of the hydraulic conductivity of an aquifer?

Conductivity / Resistivity of Rocks and Soils

Conductivity / Resistivity of Rocks and Soils

Material	$ ho~[\Omega m]$	
halite	$10^{5}-10^{7}$	
dry sand	10 ⁵	
water satur. sand	1000 - 10000	
quartzite	$3000 - 10^5$	
ice	$1000 - 10^5$	
granite	300 - 30000	
sandy soils	150 - 7000	
loamy soils	50 - 9000	
clayey soils	20 - 4000	

Material	$ ho$ [Ω m]	
limestone	100 - 7000	
marsh	30 - 700	
glacial moraine	10 - 300	
clay shale	10 - 1000	
marl	5 - 200	
loam	3 - 300	
dry clay	30 - 1000	
wet clay	1 - 30	
silt	10 - 1000	

Source: Beblo (Ed.), Umweltgeophysik

DC Conductivity/Resistivity Values	Rock	% H ₂ 0	P [Ohm m]
Resistivity (Ωm)	Siltstone	0.54	1.5*10 ⁴
0.01 0.1 1 10 100 1000 10000		0.38	5.6*10 ⁸
igneous and	Coarse grain SS	0.39	9.6*10 ⁵
graphite metamorphic rocks		0.18	10 ⁸
(igneous rocks: mafic felsic) mottled duricrust	Medium grain SS	1.0	4.3*10 ³
(metamorphic rocks)		0.1	1.4*10 ³
clays gravel and sand	Dolomite	1.3	6*10 ³
		0.96	8*10 ³
shales sandstone and conglomerate	Granite	0.31	4.4*10 ³
lignite, coal dolomite, limestone		0.19	1.8*10 ⁶
salt water fresh water permafrost	Basalt	0.95	4*10 ⁴
water, aquifers		0	1.3*10 ⁸
100 000 10 000 1 000 100 10 10 1 0.1 0.01	Graywacke SS	1.16	4.7*10 ³
Conductivity (mS/m)		0.45	5.8*10 ⁴
Source: em.geosci.xyz	Peridotite	0.1	3*10 ³
(Chapter 5, Electrical Properties of Rocks and Minerals)		0	1.8*10 ⁷

(Chapter 5, Electrical Properties of Rocks and Minerals)

The Principle of Subsurface Resistivity Measurement

Typical field installation

Source: http://www.gfinstruments.cz

The Principle of Subsurface Resistivity Measurement

- Two current electrodes A und B are plugged into the ground, and a voltage is applied, generating a current *I* from A to B.
- Two potential electrodes M und N are plugged into the ground, and the voltage U between both is measured.

Solutions of the Potential Equation in a Homogeneous Medium

Potential of a point source at the origin feeding a current I:

$$U(\vec{x}) = \frac{\rho I}{4\pi |\vec{x}|}$$

Potential of a point source at the point \vec{x}_A if the current is distributed in a half space only:

$$U(\vec{x}) = \frac{\rho I}{2\pi |\vec{x} - \vec{x}_A|}$$

Feeding in a current I at \vec{x}_A and extracting I at \vec{x}_B :

$$U(\vec{x}) = \frac{\rho I}{2\pi |\vec{x} - \vec{x}_A|} - \frac{\rho I}{2\pi |\vec{x} - \vec{x}_B|} \\ = \frac{\rho I}{2\pi} \left(\frac{1}{|\vec{x} - \vec{x}_A|} - \frac{1}{|\vec{x} - \vec{x}_B|} \right)$$

Dipole Feed in a Homogeneous Half-Space

Source: Schmidt et al., Die Erde: Der dynamische Planet (CD-ROM)

The Potential between the Electrodes

Current and Potential in Inhomogeneous Media

Source: Knödel et al., Handbuch zur Erkundung des Untergrundes von Deponien und Altlasten, Vol. 3

Arbitrary Electrode Configuration in a Homogeneous Half-Space

 Voltage between M and N is the difference of the potentials at x_M and x_N:

$$U = U(\vec{x}_{M}) - U(\vec{x}_{N})$$

$$= \frac{\rho I}{2\pi} \left(\frac{1}{|\vec{x}_{M} - \vec{x}_{A}|} - \frac{1}{|\vec{x}_{M} - \vec{x}_{B}|} - \frac{1}{|\vec{x}_{N} - \vec{x}_{A}|} + \frac{1}{|\vec{x}_{N} - \vec{x}_{B}|} \right)$$

$$= \frac{\rho I}{2\pi} \left(\frac{1}{r_{MA}} - \frac{1}{r_{MB}} - \frac{1}{r_{NA}} + \frac{1}{r_{NB}} \right)$$

where $r_{...}$ are the distances between the respective electrodes.

• Mostly, all electrodes are placed on a straight line.

The Geometric Factor

The resistivity of a homogeneous half-space can be determined according to

$$\rho = K \frac{U}{I}$$

with the geometric factor

$${\cal K} \;=\; rac{2\pi}{rac{1}{r_{MA}}-rac{1}{r_{MB}}-rac{1}{r_{NA}}+rac{1}{r_{NB}}}$$

of the selected electrode configuration.

Variants of the Wenner Configuration

Configuration	Electrode sequence	Geometric factor
Wenner α	A-M-N-B	$K=2\pi a$
Wenner β	A-B-M-N	$K=6\pi a$
Wenner γ	A-M-B-N	$K = 3\pi a$

Wenner α is the standard configuration (Wenner without further specification).

Caution: Sometimes L is used for AB/2 instead of the total offset AB.

Particularly suitable for profiling of small-scale structures, but a requires high power input.

The Pole-Dipole Configuration

Particularly suitable for investigating horizontal contrasts.

Four-Electrode Surveys

Field Work Example

Apparent Resistivity

In a inhomogeneous medium,

$$\rho_a = K \frac{U}{I}$$

is called the apparent resistivity obtained from one measurement.

- ρ_a is the resistivity of a homogeneous medium that would yield the same result for the considered electrode configuration.
- ρ_a is not the real resistivity at any depth.
- The larger the offset is, the bigger is the contribution of deep regions to ρ_a.

The Two-Layer Case

Situation: Two homogeneous regions separated by a horizontal interface. Target properties:

- $ho_1 ~=~$ resistivity of the upper layer
- ho_2 = resistivity of the lower region
 - d = thickness of the upper layer

Procedure: ρ_a is measured for several offsets AB (Wenner, Schlumberger or any other configuration).

Data analysis:

- ρ_1 is ρ_a obtained in the limit of small offsets.
- 2) ρ_2 and d can also be determined without numerical inversion.

Scaling Behavior

Rescaling the resistivities: If $\rho(\vec{x})$ is changed by the same factor λ everywhere, ρ_a changes by the same factor λ .

Spatial scaling: Stretching the entire system (including the positions of the electrodes) horizontally and vertically by a factor λ :

- If I is kept constant, all potentials change by the factor $\frac{1}{\lambda}$.
- K changes by the factor λ .

$\rho_{\rm a}$ remains the same.

Consequence for the two-layer case: For any given electrode configuration at variable offset, $\frac{\rho_a}{\rho_1}$ depends only on $\frac{\rho_2}{\rho_1}$ and $\frac{AB}{d}$ (or $\frac{AB/2}{d}$ or $\frac{a}{d}$).

Wenner and Schlumberger Configuration in the Two-Layer Case

- The result is more or less unique if a sufficient range of offsets is covered.
- The procedure can also be applied to gently dipping interfaces.
- This method has only historical and educational meaning. Practically, numerical inversion is preferred.

Multiple Layers

- Must be inverted numerically. Resistivities and thicknesses of the layers are adjusted to obtain the best fit to the measured apparent resistivities.
- The uppermost layer has a strong influence on the result.
- A deep, thin layer with a high contrast in resistivity may have a similar effect as a thicker layer with a lower contrast in resistivity.
- In the standard inversion procedure of vertical sounding, the number of layers is given, and thicknesses and resistivities are adjusted.
 Different numbers of layers may lead to strongly different results.

Quantitative analysis often hinges on independent information, e.g., from seismics or boreholes.

Multiple Layers

Difference in physical properties

To characterize different material using geophysics, a contrast must exist (i.e. a difference in the physical properties)

Source: Laurent Marescot, 2010

Difference in physical properties

Penetration Depth of the Current

Penetration Depth of the Current

Half of the current penetrates deeper than half of the total offset (AB/2), but

- the entire current must also pass shallow regions, and
- the potential electrodes are at the surface.

Typical depth of investigation is lower than AB/2.

Principle of the Sensitivity Analysis

- Assume a given configuration of electrodes in a homogeneous medium with a resistivity ρ .
- Assume that ρ is increased (decreased) by a small amount $\delta \rho$ in a small region around a given point \vec{x} in the subsurface.
- Determine how this small change affects the voltage between M and N if the current between A and B is given.

Sensitivity of the Wenner Configuration

Sensitivity of the Wenner Configuration

Sensitivity of the Wenner Configuration

Sensitivity integrated over y

Sensitivity of the Wenner Configuration

Sensitivity of the Wenner Configuration

- Sensitivity is always highest at low depth, in particular close to the electrodes M and N.
- Sensitivity changes its sign at low depths.
- Horizontally integrated sensitivity is highest at $z \approx 0.32$ a.
- Median of the horizontally integrated sensitivity distribution is at $z \approx 0.52$ a.

Regions with z < 0.52 a and z > 0.52 a contribute equally to the sensitivity in total.

0.52 a is often assumed as the typical depth of investigation.

Principle

- Several (up to some hundred) electrodes are plugged into the ground, either on a profile line or distributed in two dimensions.
- A programmable channel selector replays a defined sequence of usage of the electrodes as current or potential electrode pairs.
- The method is also called electric tomography, in particular if the electrodes are distributed in two dimensions.

Example of Equipment and Configuration

Source: Teaching material A. Henk

Pseudo-Depth Sections

Pseudo-Depth Sections

- ρ_a is registered in the middle between A and B and in a pseudo-depth corresponding to the typical depth of investigation, e.g., 0.52 *a*.
- $\bullet\,$ The plot is often vertically exaggerated in such a way that the borders have 45° angles.
- A pseudo-depth section gives a first idea on the subsurface structure.
- ρ_a is not the resistivity at any point, but some kind of average over a larger region.
- ρ_a is strongly affected by near-surface heterogeneities.

Deriving a realistic subsurface resistivity model requires a numerical inversion.

Example of a Pseudo-Depth Section

Other Configurations of Electrodes

The Wenner (α) configuration is most widely used, but all other configurations are also possible.

Electrodes

Current and potential electrodes are technically identical. Criteria (in particular for the potential electrodes):

Contact resistance to the ground should be low.

Contact voltage should be small.

- Usage of nonpolarizable electrodes, e.g., copper core in CuSO₄ solution in a porous clay cylinder.
- Simple steel electrodes can be used with modern central units that are able to compensate contact voltages automatically.

Field Equipment

The Central Unit

- Power source (constant current),
- voltmeter, and
- channel selector (for multi-electrode equipment)

are mostly combined in one unit.

Power up to about $1000 \, W$

Currents mostly between 10 mA and 1 A

Voltages (between the current electrodes) up to some 1000 V

Types of current: DC, low-frequency AC or switched DC with changing polarity