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Basic Idea

Measure electrical conductivities or resistivities using artificial fields.

Main Fields of Application

Delimiting lithologic units and fault zones
Determining depth and properties of aquifers
Monitoring the impermeability of dams
Exploration and monitoring of residual waste sites
Monitoring the spread of pollutants

Detecting potential slip surfaces (e.g., clay layers) in landslide-prone
slopes
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Basics

Electric Field and Potential

o An electric field E exerts a force
= g2

on a charge q.

@ In absence of time-dependent magnetic fields, the electric field can be
represented by the gradient of the electric potential U:

a5 U(R)
= = 3 e
X

e
%

Ox3
F(X) = —qVU(X)




Basics

Force on free electrons in a conductor

\Z

Drift of electrons in direction of the force, velocity proportional to the force

\Z

Current density (charge density x drift velocity)
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J®) = —oVUE)

@ Named after Georg Simon Ohm, 1789-1854.

@ The constant of proportionality o is a property of the material and is
denoted electrical conductivity.




Basics

@ What are the units off und o?

@ Why is Ohm'’s law not completely reasonable at first sight? What
should happen to free electrons exerted to a force?

@ Which relationships with the same structure as Ohm's law have you
met in previous classes?




Basics
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Conductivity and Resistivity

Conductivity o
[0] = & = 2, Q= Ohm =

— , S = Siemens =

><
<>

Resistivity p = %
[p] = Qm

Conductance and resistance refer to objects and not to materials and are
measured in S and €, respectively.

(Semi)Conductors p [Q2m] Nonconductors | p [Qm]
copper 1.7 x 108 porcelain 1012
iron 10~ rubber 10%3
silicium 2300 silica glass 7.5 x 10%7
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Basics

Conductivity / Resistivity of Rocks and Soils

@ Rock forming minerals have very low conductivities.
@ Many ores have considerably higher conductivities.

@ The conductivity of pure water is rather low, but strongly increases by

solving salts.
Solution p [Qm]
distilled water 10000
ocean water 0.5

10 % copper sulfate 0.3

10 % sodium chlorite 0.08
10 % sulfuric acid 0.025
10 % hydrochloric acid | 0.015




Basics

Conductivity / Resistivity of Rocks and Soils

Thus, the total conductivity of a rock or a soil strongly depends on
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@ porosity
@ water saturation
@ connectivity of the pore space

@ pureness of the contained water (in return depends on the properties
of the rock/soil)

Which are the main dependencies of the hydraulic conductivity of an
aquifer?
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Conductivity / Resistivity of Rocks and Soils

Resistivity in ohm.m
4 5 6 PR ) 9
001 01 10 10 100 1000 10 10" 100 10 10 10
. Wet Dry
Granite
Diorite —
Andesite
Basalt
Gabbro
Hornfels
Schists
Marble
Quartzite
Slate
Conglomerates —
$Sandstone
Shale
Limestone
Dolomite ——
Marls ——
Clay
Alluvium
Oil Sands
Fresh Groundwater J—
Sea Water 1
95% Pyrrhotite 1
Near Massive Galena 1

Magnetite ore
Graphitic slate
Anthracite
Lignite —

0.01 Molar KCI 1
0.01 Molar NaCl 1
0.01 Acetic acid 1
Iron

. . -6 c - -
10° 16" 10° 16° 10" 10° 001 01 10 10 100 1000 10* 10° 10° 10’ 10° 10°

Source: Loke, Tutorial: 2-D and 3-D electrical imaging surveys



https://pangea.stanford.edu/research/groups/sfmf/docs/DCResistivity_Notes.pdf

Basics

Conductivity / Resistivity of Rocks and Soils
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Material p [Q2m] Material p [Qm]
halite 10° — 107 limestone 100 — 7000
dry sand 10° marsh 30 — 700
water satur. sand | 1000 — 10000 glacial moraine | 10 — 300
quartzite 3000 — 10° clay shale 10 — 1000
ice 1000 — 10° marl 5 — 200
granite 300 — 30000 loam 3 —300
sandy soils 150 — 7000 dry clay 30 — 1000
loamy soils 50 — 9000 wet clay 1-30
clayey soils 20 — 4000 silt 10 — 1000
Source: Beblo (Ed.), Umweltgeophysik




DC Conductivity/Resistivity Values

Siltstone 0.54 1.5%10%

0.38 5.6%10° ~

Resistivity (Qm)
Coarse grain S 039 9.6*105 0.01 0.1 1 10 100 1000 10000 100 000
massive sulfide ! - {
shield
0.18 108 unweathered rocks
igneous and
metamerphic rocks
Medium grain 5 10 43*10° |
(igneous rocks: mafi felsic) mottled _ duricrust
1
0.1 1.4*10° saprolite { e weathered layered
metamarphic rocks
Dolomite 13 6410° (metamar® P
clays gravel and sand
0.96 8*10° glacial sediments
tills
Granite 0.31 4.4*10°
shales sandstone and conglomerate
0.19 1.8%10° sedimentary rocks
R 05s oy lignite, coal dolomite, limestone
asal I
salt water fresh water ermafrost
0 1.3*10% water, aquifers
seaice
Graywacke SS 1.16 4.7*10° J f .
100000 10000 1000 100 10 1 0.1 0.01

o5 5.3%100 Conductivity {mS/m)

Peridotite 0.1 3*10°
0 1.8*107
A
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Basics

The Principle of Subsurface Resistivity Measurement

© Two current electrodes A und B are plugged into the ground, and a
voltage is applied, generating a current / from A to B.

© Two potential electrodes M und N are plugged into the ground, and
the voltage U between both is measured.

Source: Schmidt et al., Die Erde: Der dynamische Planet (CD-ROM)




Basics
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Question

What are the analogies of these electrodes in subsurface hydrology?

The Potential Equation

| N\

The charge density in a conductor remains constant everywhere, so that

0

J2(X) + 5—js(X) = 0.

aj(%) = 3 () + -

x1 Ox
div(c VU(R)) = 0.

For o = const. this reduces to

2 2 2
div(VU(R) = AUGR) = ;Xl (>?)+88—X22U(>?)+88—X32U(>?) _ o
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Solutions of the Potential Equation in a Homogeneous Medium

Potential of a point source at the origin feeding a current /:

uE) = 2

47 |X|

Potential of a point source at the point X, if the current is distributed in a
half space only:

. pl
V&) = rm ==

Feeding in a current | at Xa and extracting | at Xg:

. pl el
UR) = _
(%) 2 |X — Xa| 27 |X — Xg]

~pl 1 1
2 \|X— X4 |X— XB|
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Basics

Dipole Feed in a Homogeneous Half-Space

Source: Schmidt et al., Die Erde: Der dynamische Planet (CD-ROM)




Basics

The Potential between the Electrodes

20
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Penetration Depth of the Current
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Four-Electrode Surveys

Inhomogeneous Media

Results obtained for large offsets AB are more sensitive to the resistivities
at greater depth than results obtained for small offsets.

Types of Resistivity Measurements

Vertical sounding: same location, but different offsets

Horizontal profiling: constant electrode configuration used at different
positions

Resistivity tomography: variable location and variable electrode spacing

\Z

Various types of electrode configurations more or less suitable for different
purposes




Four-Electrode Surveys
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Arbitrary Electrode Configuration in a Homogeneous Half-Space

@ Voltage between M and N is the difference of the potentials at X,
and Xy:

U = UBwm) - U(xn)

_ pl ( 1 1 1 i 1 )
21 \ |Xm — Xal |Xm — XB| |Xn — Xal Xy — XB|
pl ( 1 1 1 1 >

- - (- - - - 4 =
2r \rma B rNA - I'NB

where rare the distances between the respective electrodes.

@ Mostly, all electrodes are placed on a straight line.




Four-Electrode Surveys
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The Geometric Factor

The resistivity of a homogeneous half-space can be determined according
to

V)
= K—
p I
with the geometric factor

27

K=+ 1 1 1

e i
r'MA rvB 'NA 'nB

of the selected electrode configuration.




Four-Electrode Surveys

The Wenner (a)) Configuration
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Source: Wikipedia

K = 27a
Widely used for horizontal profiling (a fixed)

Y

T 7r7rr77r77



http://de.wikipedia.org/wiki/Geoelektrik

Four-Electrode Surveys
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Variants of the Wenner Configuration

Configuration | Electrode sequence | Geometric factor
Wenner « A-M-N-B K =2ma
Wenner A-B-M-N K = 6ra
Wenner ~ A-M-B-N K =3ra

Wenner « is the standard configuration (Wenner without further
specification).




Four-Electrode Surveys
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The Schlumberger Configuration

A M 0 N B
Erdoberflache Jl Y Y ]
7777777777777 7777777 A777 777777777 777 77777777777

a
- L o

Source: Wikipedia
T (L2 = 32) L2
K= —— >~ — firl
4a 4a irt>a
Widely used for vertical sounding (a fixed, L variable)

Caution: Sometimes L is used for AB/2 instead of the total offset AB.



http://de.wikipedia.org/wiki/Geoelektrik

Four-Electrode Surveys
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The Dipole-Dipole Configuration

A B 0 N M

Erdoberflache ¥ ¥
T/ T 77777777 T AT TAT 777777777477 N7 77777r77777

a | n-a | _a

A
Y
i

|
[}
Y

Source: Wikipedia

K = mn(n+1)(n+2)a

Particularly suitable for profiling of small-scale structures, but a requires
high power input.



http://de.wikipedia.org/wiki/Geoelektrik
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Four-Electrode Surveys

The Pole-Dipole Configuration

(n-a+a)/2

A 0 M N B
Y

Erdoberflache y | {V J
TT777 77777777 777777777 47777777777 7777777777777
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- | il
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|
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Source: Wikipedia

K = 2rn(n+1)a

Particularly suitable for investigating horizontal contrasts.



http://de.wikipedia.org/wiki/Geoelektrik

Typical field installation

Source:
http://www.lgm.de/en/en_resistivity.html#electrod
es

Source: http://www.gfinstruments.cz



Four-Electrode Surveys

Field Work Example
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Four-Electrode Surveys
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Apparent Resistivity

In a inhomogeneous medium,

U
pa = K n
is called the apparent resistivity obtained from one measurement.

@ p, is the resistivity of a homogeneous medium that would yield the
same result for the considered electrode configuration.

@ p, is not the real resistivity at any depth.

@ The larger the offset is, the bigger is the contribution of deep regions
to p,.




Layered Media
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Vertical Sounding in the Two-Layer Case

Stromlinien
------- Potentiallinian
Py P2 Wahre spezifische Widerstanda

Source: Knddel et al., Handbuch zur Erkundung des Untergrundes von Deponien und Altlasten, Vol. 3




Layered Media
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Vertical Sounding in the Two-Layer Case

Situation: Two homogeneous regions separated by a horizontal interface.

Target properties:

p1 = resistivity of the upper layer
p2 = resistivity of the lower region
d = thickness of the upper layer

Procedure: p, is measured for several offsets AB (Wenner or
Schlumberger configuration).

Data analysis can be performed graphically because ,;L: only depends on f)—f
AB/2
and —/=.




Layered Media

100 P2/Py
Wenner configuration 100
Schlumberger configuration 50

20
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0.1 110
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o 1 10 100
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Layered Media

Graphical Data Analysis in the Two-Layer Case
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Layered Media

Graphical Data Analysis in the Two-Layer Case

1000

100

Scheinbarer spez. Widerstand
[Ohm m]
o

AB /2 [m]

10 100 1000

Source: Schmidt et al., Die Erde: Der dynamische Planet (CD-ROM)
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Layered Media

Graphical Data Analysis in the Two-Layer Case
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Constant separation traversing (CST)

horizontal anomalies
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Master curves

2-layer case

* material with greater resistivity lies
below the interface

* material with greater resistivity lies
above the interface




Master curves

2-layer case
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Master curves

3-layer case

1st layer: 10 m, 100 Ohm m
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Master curves

3-layer case
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Master curves

multi-layer case

[Actual Model: Layer 1 100 @m 3 m thick
Layer2 500m 8 m thick
Layer3 2500 Qm Infinitely thick]

Field curve

Paosition of Master Curve cross for
the fit to the ascending segment

E K=-03
d —— ———
z
2
2 | 2nd Master Curve fit to the Traced Auxiliary Curve
& | ascending segment of the for K = -0.3 with its origin at A 1st Master Curve fit to the
Z | fiel curve i descending segment of the
@ field curve
4
g
<
—— t=8m >
1=3m D ey =1m
10 1 R v L L TP L
1 10 100

Electrode separation AB/ 2 (m)




Master curves

Source: Laurent Marescot, 2010

Real world geological model geophysical model

.

detected by geologists

| not by geophysicists 150°6hin

detected by geophysicists | 90 ohm.m

not by geologists

50 ohm.m E




Master curves

Source: Laurent Marescot, 2010

To characterize different material using geophysics, a
contrast must exist (i.e. a difference in the physical

properties)
Real world geological model geophysical model
149 ohm.m
grey and red 150 ohm.m
; :\md 149 ohm.m
2 N&' 151 ohmm
e e s red 149 ohm.m
grey.and red 150 ohm.m E

contrast in geology (color)
not in geophysics (same resistivity)




Master curves

multi-layer case

[Actual Model: Layer 1 100 @m 3 m thick
Layer2 500m 8 m thick
Layer3 2500 Qm Infinitely thick]

Field curve

Paosition of Master Curve cross for
the fit to the ascending segment

E K=-03
d —— ———
z
2
2 | 2nd Master Curve fit to the Traced Auxiliary Curve
& | ascending segment of the for K = -0.3 with its origin at A 1st Master Curve fit to the
Z | fiel curve i descending segment of the
@ field curve
4
g
<
—— t=8m >
1=3m D ey =1m
10 1 R v L L TP L
1 10 100

Electrode separation AB/ 2 (m)




Layered Media

(e
UNI
FREIBURG

The Two-Layer Case

@ The result is more or less unique if a sufficient range of offsets is
covered.

@ The procedure can also be applied to gently dipping interfaces.

@ This method has only historical and educational meaning. Practically,
numerical inversion is preferred.
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Layered Media

Multiple Layers

@ Must be inverted numerically. Resistivities and thicknesses of the
layers are adjusted to obtain the best fit to the measured apparent
resistivities.

@ The uppermost layer has a strong influence on the result.

@ A deep, thin layer with a high contrast in resistivity may have a
similar effect as a thicker layer with a lower contrast in resistivity.

@ In the standard inversion procedure of vertical sounding, the number
of layers is given, and thicknesses and resistivities are adjusted.
Different numbers of layers may lead to strongly different results.

\Z

Quantitative analysis often hinges on independent information, e. g., from
seismics or boreholes.
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ultiple Layers
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O
~ 100 |- 100--[- 100 -] 100 - m
: it Sand/ Kles
7

et

$Schichtwiderstand (Qm)
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AB/2 ()
1 10 100 1000

e

1004

Source: Knddel et al., Handbuch zur Erkundung des Untergrundes von Deponien und Altlasten, Vol. 3




Sensitivity Analysis
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Penetration Depth of the Current

Half of the current penetrates deeper than half of the total offset (AB/2),
but

@ the entire current must also pass shallow regions, and

@ the potential electrodes are at the surface.

\Z

Typical depth of investigation is lower than AB/2.




Sensitivity Analysis
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Principle of the Sensitivity Analysis

@ Assume a given configuration of electrodes in a homogeneous medium
with a resistivity p.

@ Assume that p is increased (decreased) by a small amount dp in a
small region around a given point X in the subsurface.

@ Determine how this small change affects the voltage between M and
N if the current between A and B is given.
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Sensitivity Analysis

Sensitivity of the Wenner Configuration

Sensitivity at z/a = 0.1
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Sensitivity Analysis

Sensitivity of the Wenner Configuration

Sensitivity at z/a = 0.2
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Sensitivity Analysis

Sensitivity of the Wenner Configuration

Sensitivity at z/a = 0.3
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Sensitivity Analysis

Sensitivity of the Wenner Configuration

Sensitivity at z/a = 0.4
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Sensitivity Analysis
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Sensitivity of the Wenner Configuration

Sensitivity at z/a = 0.5
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Sensitivity Analysis cH

Sensitivity of the Wenner Configuration

Sensitivity at z/a = 1




Sensitivity Analysis

Sensitivity of the Wenner Configuration

Sensitivity at z/a = 2
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Sensitivity Analysis

Sensitivity of the Wenner Configuration

Sensitivity at z/a=5 -5
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Sensitivity Analysis

Sensitivity of the Wenner Configuration

Sensitivity integrated over y
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Sensitivity Analysis

Sensitivity of the Wenner Configuration

0.2

-- fmaximurrl1 (z/a=0.32)
median (z/a = 0.52)
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Sensitivity Analysis
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Sensitivity of the Wenner Configuration
@ Sensitivity is always highest at low depth, in particular close to the
electrodes M and N.
@ Sensitivity changes its sign at low depths.
@ Horizontally integrated sensitivity is highest at z ~ 0.32 a.

@ Median of the horizontally integrated sensitivity distribution is at

z~ 052 a.

Regions with z < 0.52 a and z > 0.52 a contribute equally to the
sensitivity in total.

0.52 a is often assumed as the typical depth of investigation.




Multi-Electrode Arrays
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Principle

@ Several (up to some hundred) electrodes are plugged into the ground,
either on a profile line or distributed in two dimensions.

@ A programmable channel selector replays a defined sequence of usage
of the electrodes as current or potential electrode pairs.

@ The method is also called electric tomography, in particular if the
electrodes are distributed in two dimensions.




Multi-Electrode Arrays
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Example of Equipment and Configuration

Source: Teaching material A. Henk




Multi-Electrode Arrays

Pseudo-Depth Sections
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Multi-Electrode Arrays

Pseudo-Depth Sections




Multi-Electrode Arrays
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Pseudo-Depth Sections

pa is registered in the middle between A and B and in a pseudo-depth
corresponding to the typical depth of investigation, e.g., 0.52 a.

The plot is often vertically exaggerated in such a way that the borders
have 45° angles.

A pseudo-depth section gives a first idea on the subsurface structure.

pa is not the resistivity at any point, but some kind of average over a
larger region.

pa is strongly affected by near-surface heterogeneities.

\Z

Deriving a realistic subsurface resistivity model requires a numerical
inversion.




Multi-Electrode Arrays

Example of a Pseudo-Depth Section
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Apparent resistivity [Qm]

0 T T
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1500
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Other Configurations of Electrodes

The Wenner («) configuration is most widely used, but all other

configurations are also possible.

.

A\,



Electric resistivity tomography (ERT)

Electric
tomography
inversion

Am=[G'G+W]'G"ad
with:

Am =log(p)

Ad =log(p™ )~ log(p:™ )
_ Og(m),
- om,
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Resistivity scale in Qm 55

Laurent Marescot, 2010




Field Equipment
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Electrodes

Current and potential electrodes are technically identical. Criteria (in
particular for the potential electrodes):

Contact resistance to the ground should be low.
Contact voltage should be small.

@ Usage of nonpolarizable electrodes, e. g., copper core in CuSOg4
solution in a porous clay cylinder.

@ Simple steel electrodes can be used with modern central units
that are able to compensate contact voltages automatically.




Field Equipment
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The Central Unit

@ Power source (constant current),
@ voltmeter, and

@ channel selector (for multi-electrode equipment)

are mostly combined in one unit.

Power up to about 1000 W

Currents mostly between 10 mA and 1 A

Voltages (between the current electrodes) up to some 1000V

Types of current: DC, low-frequency AC or switched DC with changing
polarity
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