Refraction Seismic

Different layer cases

Multiple Refraction

- Several head waves.
- Evaluation becomes more complicated, but without principal problems.
- Important limitation: Only interfaces where the velocity increases towards to lower layer can be detected (also applies to the case of two layers).

Geometry of 3-layer refraction

 V_3

Multiple Refractions Seismogram

Multiple Refractions and Hidde Layers

a) Intermediate low-velocity layer

TWT (ms)

a) Intermediate low-velocity layer

Distance (m)	Direct wave (ms)	Interface 2 Refraction (ms)	V1 (m/s):	1000
			V2 (m/s):	500
10	10,0	51,9	V3 (m/s):	4000
20	20,0	54,4	h1 (m):	5
30	30,0	56,9	h2 (m):	10
80	80,0	69,4	Interval (m):	10
90	90,0	71,9		
100	100,0	74,4	Intercept time (ms):	49,4
110	110,0	76,9		

b) Thin intermediate layer

b) Thin intermediate layer

Distance (m)	Direct wave (ms)	Interface 1 Refraction (ms)	Interface 2 Refraction (ms)
5	10	40,93	47,65
10	20	44,50	48,76
15	30	48,08	49,87
20	40	51,65	50,99
25	50	55,22	52,10
30	60	58,79	53,21
35	70	62,36	54,32
40	80	65,93	55,43
45	90	69,50	56,54
50	100	73,08	57,65
55	110	76,65	58,76
60	120	80,22	59,87
V1 (m/s)	500		
V2 (m/s)	1400		
V3 (m/s)	4500		
h1 (m)	10		
h2 (m)	5		
Interval (m)	5		

Lateral velocity changes

Refraction Seismic

Application

Interpretation of first picks

Interpretation of first picks

Interpretation of first picks

FU Berlin (2007)

Translation into Geotechnical Subsurface Properties

Translation into Geotechnical Subsurface Properties

Translation into Geotechnical Subsurface Properties

Reflection Seismic

Application

Editing and Muting

- A) Head Wave
- B) Reflection
- C) Ground Roll

Undesired signals

- Head wave and surface noise
- Ground roll

Desired signals

• Reflection hyperbola

Reflection Seismics - Editing

Editing Sequences

Filters

- Seismic and SPS files merge, with minimum filter application through Autocorrelation with pilot sweep.
- Decay compensation by scaling of (T^2.2).
- Despiking for high amplitude noise bursts attenuation.
- Wavelet transform filter (WTF) for coherent noise sources attenuation.
- 3D FK filter .
- Normal Moveout correction NMO.
- Automatic Gain Correction AGC.
- Random Noise Attenuation , Minimum Noise Attenuation.
- Phase correction for Onshore data, and Time-Phase shift correction for Offshore data.
- Fourier Transfor Filter (FTF).
- Stacking.
- Zero Phase filter application.
- Low filter migration.
- Deconvolution.
- Depth moveout correction DMO.

Parameters

Parameter	Method
Sesimic, SPS files	Data Merge
Time, Amplitude	*Autocorrelation
Time, Amplitude	*Decay compensation
Time, Frequency	Despiking
Time, Amplitude	WTF
Time,Frequency	3D FK filter
Time, Frequency	NMO
Time, Amplitude	*AGC
Time, Frequency	Noise attenuation
Time,Frequency	*Fourier Transform
Time, Amplitude	Stacking
Time, Frequency	Zero Phase filte
Time, Frequency	*Low filter migration
Time, Frequency	Deconvolution
Depth	*Depth moveout correction DMO.

NMO Example

Noise:

application of a high pass filter (above 380 MHz):

- Air wave
- Rayleigh wave
- Ground roll
- Surface wave
- Refraction
- Head wave
- Multiple reflection
- Cultural noise

FK-Filter

• The aim of this process is to attenuate the low frequency ground roll energy.

Raw Stack

Deconvolution

Deconvolution

• Multiples are considered "coherent" noise or unwanted signal

Spread Geometry and Shot Gathers

End-shot traversing

Split spread and midpoint source receiver combinations

Common shot or receiver gather

- easy to inspect traces in these displays for bad receivers or bad shots
- Typical for basic quality assessment in field acquisition (e.g. marine seismics)

Common offset gather, COFF

- Represents approximates a structural section
- Water table mapping
- No NMO required
- Used in amplitude variation analysis
- Near offset trace \rightarrow brute stack

- For horizontal reflectors, the reflection point is halfway between shot and receiver (at the "midpoint")
- The basic objective is to sample each subsurface point more than once
- The number of traces in a CMP gather is known as the "fold" of the surv
- The essence of CMP processing is:
 - 1. Resorting into CMP gathers
 - 2. Correction for moveout
 - 3. Summation, or "stacking"

- For horizontal reflectors, the reflection point is halfway between shot and receiver (at the "midpoint")
- The basic objective is to sample each subsurface point more than once
- The number of traces in a CMP gather is known as the "fold" of the surv
- The essence of CMP processing is:
 - 1. Resorting into CMP gathers
 - 2. Correction for moveout
 - 3. Summation, or "stacking"

Common midpoint gather, CMP – gone wrong

Common depth point gather, CDP

- With known velocities possible computation of the common depth point.
- Also used in amplitude variation analysis

Common depth point gather, CDP

- With known velocities possible computation of the common depth point.
- Also used in amplitude variation analysis

Common depth point gather, CDP

Fresnel zone

Fresnel zone

3D fold coverage

Field Area

OffShore survey

OnShore survey

Common-Midpoint(CMP) and Normal Move Out

Normal Moveout Correction

The increase of the travel time with the offset of called Normal Moveout (NMO).

The correction to zero offset is called NMO correction or Common Midpoint (CMP) method. It is applied before stacking the seismic signals radiated by several sources or recorded by several geophones in order to improve the quality of the signal.

Normal Moveout Correction

Normal Move Out Correction

- Increase signal-to-noise
- If traces are summed together, the stack trace is referred to as its fold
- For common shot or receiver gathers, frequencies of long offsets will be "smeared"

NMO pit falls

Undercorrected poor stack response
NMO V = 2 km/s

2. Good stack response NMO V = 1.7 km/s

 Overcorrected poor stack response NMO V = 1.5 km/s

Editing sequences

Synthetic Seismogram and Depth Inversion

Depth migration

FORMATION	Depth (m)	TWT (ms)	Average	2,200 2,300 2,400 2,500 2,600 2,700 2,800 2,900 3
	DIVISE	DIVIGL	velocity (III/S)	0.7
ZEIT	935	771	2,427	
SOUTH_GHARIB	1,374	1,044	2,632	0.9
BELAYIM	1,610	1,151	2,797	
KAREEM	1,861	1,268	2,936	11
UPPER RUDEIS	2,150	1,449	2,968	
LOWER RUDEIS	2,601	1,747	2,978	1.3
NUKHUL	3,420	2,224	3,076	1.5
EOCENE	3,464	2,244	3,087	
INTRUSION	3,491	2,256	3,095	17
THEBES (EOCENE)	3,573	2,291	3,119	
ESNA (PALEOCENE)	3,794	2,375	3,195	1.9
SUDR (U.SENONIAN)	3,830	2,391	3,204	2.1
LACOSTINA (BRWN LSTONE)	3,915	2,422	3,233	
MATULLA (L. SENONIAN)	3,983	2,448	3,254	2.3
WATA (TURONIAN)	4,088	2,495	3,277	
RAHA (CENOMANIAN)	4,210	2,539	3,316	2.5
NUBIA	4,310	2,583	3,337	27
TD	4,381			

000 3,100 3,200 3,300 3,400

Depth migration

Migration

Migrating the seismic image on to the plane of the reflector

Migration

Migration of stacked (ZSR) trace by Kirchhoff summation

Migration

Migration of a diffraction by Kirchhoff summation

Migration

Un-migrated Model

Migration

• Seismiet metatio(migrated)

Seismic interpretation

Signal form

(source: Selley and Sonnenberg, 1985)

(source: Selley and Sonnenberg, 1985)

Table 2	
Shale	v = 2 300 m/s
Gas-saturated sand	v = 1 900 m/ s
Oil-saturated sand	v = 3 000 m/s
Water-saturated sand	v = 3 200 m/s

Interpreting subsurface properties

seismic profile (Schroot and Schuttenhelm 2003 North sea

Interpreting subsurface properties

Seismic interpretation

Refraction Seismics vs. Reflection Seismics

Advantages of Reflection Seismics

- High spatial resolution
- Complex geological structures (non-planar interfaces) can in principle be resolved.
- Layers with lower velocities can also be detected.

Advantages of Refraction Seismics

- Relatively simple evaluation.
- Moderate requirements on seismic energy.

Borehole logging

FWS Probe

Sonic Log - Vertical Seismic Profiling (VSP)

Sonic Log - acoustic imaging methods and FMI/FMS

- accurate characterisation of borehole breakouts and induced fractures (geometry, locations and orientation)
- improve wellbore stability modelling and well planning
- aid Frac-job design
- establish sealing potential of natural fractures

Borehole Breakouts in Acoustic Image

Drilling-induced Fractures in Resistivity Image

Quelle: Schlumberger 2017

Scale of a wavelet

