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Classification of Mass Movements According to Varnes

Classification by the Type of Movement

Modified from: Shanmugam & Wang, Journal of Palaeogeography, 2015, doi: 10.3724/SP.J.1261.2015.00071
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https://doi.org/10.3724/SP.J.1261.2015.00071


Classification of Mass Movements According to Varnes

Classification by the Material

Rock: Hard or firm mass that was intact and in its natural place before
the initiation of movement.

Soil: An aggregate of solid particles, generally of minerals and rocks, that
either was transported or was formed by the weathering of rock in
place. Gases or liquids filling the pores of the soil form part of the soil.

Earth: Material in which 80 % or more of the particles are smaller than
2 mm, the upper limit of sand sized particles.

Mud: Material in which 80 % or more of the particles are smaller than
0.06 mm, the upper limit of silt sized particles.

Debris: Contains a significant proportion of coarse material; 20 % to 80 %
of the particles are larger than 2 mm.
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Mass Movements as a Geohazard

Worldwide Death Toll Since 1900
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Mass Movements as a Geohazard

Worldwide Death Toll Since 1900
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Examples From the Alps

Rockslide at Randa (Matter Valley, 1991, V ≈ 30 mil. m3)

Source: Wikipedia

Foto: S. Hergarten
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https://en.wikipedia.org/wiki/Randa_rockslides


Examples From the Alps

Flims Rockslide (9500 years b.p., V ≥ 8 km3)

Photo: K. Stüwe & R. Homberger (www.alpengeologie.org)
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http://www.alpengeologie.org


Regional Examples

Wutach Gorge (2017)

Photo: M. Geyer (www.geotourist-freiburg.de)
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http://www.geotourist-freiburg.de


Regional Examples

Freiburg, Main Railway Track (2016)

Photo: T. Kunz (Badische Zeitung)
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http://www.badische-zeitung.de/freiburg/bahnarbeiten-werden-immer-mehr-zur-dauerbaustelle--122570459.html


Rotational Slides

Area Element

Size of an area element:

δA = w r δα = w
δx

cosα

with

w = width in x2 direction

δα = angle increment

δx = increment in x1 direction

α

x
1

x
3

r

In integral form:∫
... dA = w r

∫
... dα = w

∫
...

cosα
dx
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Rotational Slides

Overall Factor of Safety

Continuous form:

FoS =

∫
σcrit

s dA∫
σsdA

=

∫
σcrit

s dα∫
σsdα

=

∫ σcrit
s

cosαdx∫
σs

cosαdx

As a discrete sum:

FoS ≈
∑

i σ
crit
si δAi∑

i σsiδAi
≈
∑

i σ
crit
si δαi∑

i σsiδαi
≈
∑

i
σcrit

si
cosαi

δxi∑
i

σsi
cosαi

δxi
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Rotational Slides

Fellenius’ Method

Introduced by W. Fellenius 1929

Earliest and simplest model for rotational slope failure taking into
account the variation in σn and thus σcrit

s along the slip circle

Also called ordinary method of slices (OMS)

Originally developed in terms of torques for a discrete set of vertical
slices

Can also be derived from a simplified stress tensor

σ =

 0 0 0
0 0 0
0 0 −ρgh


(in Cartesian coordinates (σ̃ in assignment 1) where h is the depth
below the surface
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Rotational Slides

Fellenius’ Method

σn = −ρgh cos2 α

σs = ρgh cosα sinα

σcrit
s = C − σn tanφ = C + ρgh cos2 α tanφ

Local

FoSloc =
σcrit

s

σs
=

C + tanφ ρgh cos2 α

ρgh sinα cosα
=

tanφ

tanα
+

C

ρgh cosα sinα
.
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Rotational Slides

Fellenius’ Method

Overall

FoS =

∫ (
C + tanφ ρgh cos2 α

)
dα∫

ρgh cosα sinα dα

=

∫ (
C

cosα + tanφ ρgh cosα
)
dx∫

ρgh sinα dx

≈

∑
i

(
C

cosαi
+ tanφ ρghi cosαi

)
δxi∑

i ρghi sinαi δxi
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Rotational Slides

Bishop’s Method

Introduced by A. W. Bishop 1955

Most widely used model for rotational slope failure

Originally developed in terms of torques for a discrete set of vertical
slices

Can also be derived from a simplified, inconsistent stress tensor

σ =

 0 0 τ
0 0 0
0 0 −ρgh


with an arbitrary stress τ
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Rotational Slides

Bishop’s Method

σn = −ρgh cos2 α + τ cosα sinα

σs = ρgh cosα sinα + τ cos2 α

σcrit
s = C − σn tanφ = C + tanφ

(
ρgh cos2 α− τ cosα sinα

)

Local

FoSloc =
σcrit

s

σs
=

C + tanφ
(
ρgh cos2 α− τ cosα sinα

)
ρgh cosα sinα + τ cos2 α

τ =
C + tanφ ρgh cos2 α− FoSloc ρgh cosα sinα

FoSloc cos2 α + tanφ cosα sinα
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Rotational Slides

Bishop’s Method

σn =
C tanα− FoSloc ρgh

FoSloc + tanφ tanα

σs =
C + tanφ ρgh

FoSloc + tanφ tanα

σcrit
s =

C + tanφ ρgh

1 + tanφ tanα
FoSloc

σs is inconsistent.

Even if it was correct, it would not be useful at this stage.

17 / 32



Rotational Slides

Bishop’s Method

Assume that

τ only affects σn and thus σcrit
s , but not σs.

FoS in the expression for σcrit
s is the overall FoS.

Overall

FoS =

∫ σcrit
s

cosαdx∫
σs

cosαdx
=

∫ C+tanφ ρgh

cosα+ tan φ sin α
FoS

dx∫
ρgh sinα dx

≈

∑
i

C+tanφ ρghi

cosαi+
tan φ sin αi

FoS

δxi∑
i ρghi sinαi δxi

18 / 32



Rotational Slides

Bishop’s Method

Occurrence of FoS at the right-hand side can be treated using a
fixed-point iteration.

Converges rapidly

Useful initial guess: FoS of Fellenius method

Local

FoSloc =
σcrit

s

σs
=

C+tanφ ρgh

1+ tan φ tan α
FoS

ρgh cosα sinα
=

C
ρgh + tanφ(

cosα + tanφ sinα
FoS

)
sinα
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Fahrboeschung and Talweg

The Fahrboeschung Concept

Dates back to Albert Heim (1932).

Mostly applied to rockfalls and rock avalanches, but also to mud
flows and debris flows.

Ratio of fall height H and runout length L.

Source: de Graaf & Bowman, 12th International Symposium on Landslides, 2016
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https://www.researchgate.net/publication/305057191_Influences_of_strain_rate_and_shear_rate_on_the_propagation_of_large_scale_rock_avalanches


Fahrboeschung and Talweg

Dependence of Fahrboeschung on Volume

Source: Basharat & Rohn, Nat. Hazards, 2015
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https://link.springer.com/article/10.1007/s11069-015-1590-4


Fahrboeschung and Talweg

Physical Interpretation of Fahrboeschung

Consider a particle moving on a 1D topography H(x) with a given
coefficient of kinetic (dynamic, sliding) friction ξ.

Friction force:
Ff = ξmg cosβ

if dynamic effects are neglected with the slope angle β according to

tanβ = − ∂H

∂x

Energy consumed by friction:

Ef =

∫
Ff v dt = ξmg

∫
v cosβ dt = ξmg L

with L = traveled distance in x direction (horizontally measured)
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Fahrboeschung and Talweg

Physical Interpretation of Fahrboeschung

Converted potential energy:

Ep = mg H

with H = height drop

Particle comes to rest when Ef = Ep.

H

L
= ξ
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Fahrboeschung and Talweg

Definition and Mathematical Description of the Talweg

Consider a given topography H(x1, x2). The talweg (also thalweg) is the
line (from a given point) following the direction of the steepest descent.

Talweg line ~s(t) =
(
s1(t)
s2(t)

)
(in map view) can be described by the ordinary

differential equation
d

dt
~s(t) ∼ −∇H(~s(t))

where t is the curve parameter (not necessariliy time).

The factor of proportionality does not affect the talweg line, but only the
meaning of t; any positive (not necessarily constant) value can be used.

Convenient choice:
d

dt
~s(t) = − ∇H(~s(t))

|∇H(~s(t))|
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Fahrboeschung and Talweg

Applications of the Talweg Concept to Mass Movements

Simplest “realistic” path of downward movement; relation H
L = ξ

remains valid with L = track length (not a straight line).

Construction of locally aligned coordinate systems for granular flow
models based on continuum mechanics

Savage-Hutter model (1989)
avalanche model RAMMS
Cartesian coordinate system
(Hergarten & Robl, NHESS, 2015)
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Falling

Particle Motion

Neglect air drag and interactions between particles

parabolic traces

~v(t + δt) = ~v(t) + δt
(

0
0

−g

)
~x(t + δt) = ~x(t) + δt ~v(t) +

1

2
δt2
(

0
0

−g

)
valid for any t and δt
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Falling

Rebound at the Surface

Source: Dorren, Rockyfor3D (v5.2) revealed, ecorisQ paper, 2016
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https://www.ecorisq.org/docs/Rockyfor3D_v5_2_EN.pdf


Falling

Rebound at the Surface

Simplest approach: normal and tangential components of the velocity are
reduced by different factors

vn → −Rn vn

vt → Rt vt

where

Rn = coefficient of restitution normal to the surface,

depends on the material

Rt = coefficient of restitution parallel to the surface,

mainly depends on the roughness of the surface
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Falling

Coefficient of Restitution Normal to the Slope

Source: Dorren, Rockyfor3D (v5.2) revealed, ecorisQ paper, 2016
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https://www.ecorisq.org/docs/Rockyfor3D_v5_2_EN.pdf


Falling

Coefficient of Restitution Parallel to the Slope

Difficult to estimate, e. g.,

Rt =
1

1 +
MOH+Dp

R

with

MOH = representative obstacle height

Dp = depth of penetration

R = radius of the particle
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Falling

Measuring Coefficients of Restitution in Laboratory
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Granular Flow

Explanation of the Quadratic Friction Law
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