Near-surface Geophysics

Resistivity Methods

Jakob Wilk Institute of Earth and Environmental Sciences

Basic Idea

• Measure electrical conductivities or resistivities using artificial fields.

FREIBURG

Main Fields of Application

- Delimiting lithologic units and fault zones
- Determining depth and properties of aquifers
- Monitoring the impermeability of dams
- Exploration and monitoring of residual waste sites
- Monitoring the spread of pollutants
- Detecting potential slip surfaces (e. g., clay layers) in landslide-prone slopes

Mostly:

FREIBURG

Electric Field and Potential

• An electric field \vec{E} exerts a force

$$\vec{F} = q \vec{E}$$

on a charge q.

• In absence of time-dependent magnetic fields, the electric field can be represented by the gradient of the electric potential *U*:

$$\vec{E}(\vec{x}) = -\nabla U(\vec{x}) = -\begin{pmatrix} \frac{\partial}{\partial x_1} U(\vec{x}) \\ \frac{\partial}{\partial x_2} U(\vec{x}) \\ \frac{\partial}{\partial x_3} U(\vec{x}) \end{pmatrix}$$
$$\bigvee$$
$$\vec{F}(\vec{x}) = -q \nabla U(\vec{x})$$

FREIBURG

Electric Field and Potential

• An electric field \vec{E} exerts a force

$$\vec{F} = q \vec{E}$$

on a charge q.

• In absence of time-dependent magnetic fields, the electric field can be represented by the gradient of the electric potential *U*:

$$\vec{E}(\vec{x}) = -\nabla U(\vec{x}) = -\begin{pmatrix} \frac{\partial}{\partial x_1} U(\vec{x}) \\ \frac{\partial}{\partial x_2} U(\vec{x}) \\ \frac{\partial}{\partial x_3} U(\vec{x}) \end{pmatrix}$$
$$\bigvee$$
$$\vec{F}(\vec{x}) = -q \nabla U(\vec{x})$$

- Named after Georg Simon Ohm, 1789-1854.
- The constant of proportionality σ is a property of the material and is denoted electrical conductivity.

FREIBURG

Conductivity and Resistivity

Conductivity σ $[\sigma] = \frac{1}{\Omega m} = \frac{s}{m}, \ \Omega = Ohm = \frac{V}{A}, \ S = Siemens = \frac{A}{V}$ Resistivity $\rho = \frac{1}{\sigma}$ $[\rho] = \Omega m$

Conductance and resistance refer to objects and not to materials and are measured in S and Ω , respectively.

(Semi)Conductors	$ ho~[\Omega m]$	Nonconductors	$ ho~[\Omega m]$
copper	$1.7 imes10^{-8}$	porcelain	10 ¹²
iron	10 ⁻⁷	rubber	10 ¹³
silicium	2300	silica glass	$7.5 imes10^{17}$

Conductivity / Resistivity of Rocks and Soils

- Rock forming minerals have very low conductivities.
- Many ores have considerably higher conductivities.
- The conductivity of pure water is rather low, but strongly increases by solving salts.

Solution	$ ho$ [Ω m]
distilled water	10000
ocean water	0.5
10% copper sulfate	0.3
10 % sodium chlorite	0.08
10 % sulfuric acid	0.025
10% hydrochloric acid	0.015

Conductivity / Resistivity of Rocks and Soils

Conductivity / Resistivity of Rocks and Soils

Material	$ ho~[\Omega m]$
halite	$10^{5}-10^{7}$
dry sand	10 ⁵
water satur. sand	1000 - 10000
quartzite	$3000 - 10^5$
ice	$1000 - 10^5$
granite	300 - 30000
sandy soils	150 - 7000
loamy soils	50 - 9000
clayey soils	20 - 4000

Material	$ ho$ [Ω m]
limestone	100 - 7000
marsh	30 - 700
glacial moraine	10 - 300
clay shale	10 - 1000
marl	5 - 200
loam	3 - 300
dry clay	30 - 1000
wet clay	1 - 30
silt	10 - 1000

Source: Beblo (Ed.), Umweltgeophysik

Conductivity / Resistivity of Rocks and Soils

FREBURG

Conductivity / Resistivity of Rocks and Soils

Thus, the total conductivity of a rock or a soil strongly depends on

- porosity
- water saturation
- connectivity of the pore space

$$\sigma_{\rm G} = a \ \varphi^n \ S^m \ \sigma_{\rm F}$$

with:

material conductivity (σ G), material properties (a, n, m), porosity (ϕ), conductivity of formation water ($\sigma_{\rm F}$) and pores actually containing water (S)

Conductivity / Resistivity of Rocks and Soils

Thus, the total conductivity of a rock or a soil strongly depends on

- porosity
- water saturation
- connectivity of the pore space
- pureness of the contained water (in return depends on the properties of the rock/soil)

Question

Which are the main dependencies of the hydraulic conductivity of an aquifer?

FREIBURG

Conductivity / Resistivity of Rocks and Soils

Thus, the total conductivity of a rock or a soil strongly depends on

- porosity
- water saturation
- connectivity of the pore space
- pureness of the contained water (in return depends on the properties of the rock/soil)

Question

Which are the main dependencies of the hydraulic conductivity of an aquifer?

Dynamic viscosity (μ), Permeability (κ) and Pressure drop (Δp)

The Principle of Subsurface Resistivity Measurement

- Two current electrodes A und B are plugged into the ground, and a voltage is applied, generating a current *I* from A to B.
- Two potential electrodes M und N are plugged into the ground, and the voltage U between both is measured.

The Principle of Subsurface Resistivity Measurement

- Two current electrodes A und B are plugged into the ground, and a voltage is applied, generating a current *I* from A to B.
- Two potential electrodes M und N are plugged into the ground, and the voltage U between both is measured.

The Potential between the Electrodes

Solutions of the Potential Equation in a Homogeneous Medium

Potential of a point source at the origin feeding a current *I*:

$$U(\vec{x}) = \frac{\rho I}{4\pi |\vec{x}|}$$

Potential of a point source at the point \vec{x}_A if the current is distributed in a half space only:

$$U(\vec{x}) = \frac{\rho I}{2\pi |\vec{x} - \vec{x}_A|}$$

Feeding in a current I at \vec{x}_A and extracting I at \vec{x}_B :

$$U(\vec{x}) = \frac{\rho I}{2\pi |\vec{x} - \vec{x}_{A}|} - \frac{\rho I}{2\pi |\vec{x} - \vec{x}_{B}|} \\ = \frac{\rho I}{2\pi} \left(\frac{1}{|\vec{x} - \vec{x}_{A}|} - \frac{1}{|\vec{x} - \vec{x}_{B}|} \right)$$

L

Arbitrary Electrode Configuration in a Homogeneous Half-Space

 Voltage between M and N is the difference of the potentials at x_M and x_N:

$$\begin{array}{lll} \mathcal{U} & = & \mathcal{U}(\vec{x}_{\mathcal{M}}) - \mathcal{U}(\vec{x}_{\mathcal{N}}) \\ & = & \displaystyle \frac{\rho I}{2\pi} \left(\frac{1}{|\vec{x}_{\mathcal{M}} - \vec{x}_{\mathcal{A}}|} - \frac{1}{|\vec{x}_{\mathcal{M}} - \vec{x}_{\mathcal{B}}|} - \frac{1}{|\vec{x}_{\mathcal{N}} - \vec{x}_{\mathcal{A}}|} + \frac{1}{|\vec{x}_{\mathcal{N}} - \vec{x}_{\mathcal{B}}|} \right) \\ & = & \displaystyle \frac{\rho I}{2\pi} \left(\frac{1}{r_{\mathcal{M}\mathcal{A}}} - \frac{1}{r_{\mathcal{M}\mathcal{B}}} - \frac{1}{r_{\mathcal{N}\mathcal{A}}} + \frac{1}{r_{\mathcal{N}\mathcal{B}}} \right) \end{array}$$

where r... are the distances between the respective electrodes.
Mostly, all electrodes are placed on a straight line.

Dipole Field in a Homogeneous Half-Space

UNI

Penetration Depth of the Current

UNI

Dipole Field in a Homogeneous Half-Space

L

Arbitrary Electrode Configuration in a Homogeneous Half-Space

 Voltage between M and N is the difference of the potentials at x_M and x_N:

$$\begin{array}{lll} \mathcal{U} & = & \mathcal{U}(\vec{x}_{\mathcal{M}}) - \mathcal{U}(\vec{x}_{\mathcal{N}}) \\ & = & \displaystyle \frac{\rho I}{2\pi} \left(\frac{1}{|\vec{x}_{\mathcal{M}} - \vec{x}_{\mathcal{A}}|} - \frac{1}{|\vec{x}_{\mathcal{M}} - \vec{x}_{\mathcal{B}}|} - \frac{1}{|\vec{x}_{\mathcal{N}} - \vec{x}_{\mathcal{A}}|} + \frac{1}{|\vec{x}_{\mathcal{N}} - \vec{x}_{\mathcal{B}}|} \right) \\ & = & \displaystyle \frac{\rho I}{2\pi} \left(\frac{1}{r_{\mathcal{M}\mathcal{A}}} - \frac{1}{r_{\mathcal{M}\mathcal{B}}} - \frac{1}{r_{\mathcal{N}\mathcal{A}}} + \frac{1}{r_{\mathcal{N}\mathcal{B}}} \right) \end{array}$$

where r... are the distances between the respective electrodes.
Mostly, all electrodes are placed on a straight line.

Arbitrary Electrode Configuration in a Homogeneous Half-Space

The resistivity of a homogeneous half-space can be determined according to

$$\rho = K \frac{0}{1}$$

with the geometric factor

$$K = rac{2\pi}{rac{1}{r_{MA}} - rac{1}{r_{MB}} - rac{1}{r_{NA}} + rac{1}{r_{NB}}}$$

of the selected electrode configuration.

The Wenner (α) Configuration

Widely used for horizontal profiling (a fixed)

Variants of the Wenner Configuration

Configuration	Electrode sequence	Geometric factor
Wenner α	A-M-N-B	$K = 2\pi a$
Wenner β	A-B-M-N	${\it K}=6\pi a$
Wenner γ	A-M-B-N	$K = 3\pi a$

Wenner α is the standard configuration (Wenner without further specification).

Widely used for vertical sounding (a fixed, L variable)

Caution: Sometimes L is used for AB/2 instead of the total offset AB.

The Dipole-Dipole Configuration

$$K = \pi n(n+1)(n+2) a$$

Particularly suitable for profiling of small-scale structures, but a requires high power input.

Particularly suitable for investigating horizontal contrasts.

Surveys

Source: http://www.gfinstruments.cz

Source: http://www.lgm.de

Types of Resistivity Measurements

Results obtained for large offsets AB are more sensitive to the resistivities at greater depth than results obtained for small offsets.

Vertical sounding: same location, but different offsets Horizontal profiling: constant electrode configuration used at different positions

Resistivity tomography: variable location and variable electrode spacing

Various types of electrode configurations more or less suitable for different purposes

Surveys – Vertical Sounding

FREIBURG

Surveys – Horizontal Profiling/Constant Separation Traversing (CST)

2 1 0 1 2

Source: Teaching material A. Henk

Surveys – Resistivity Tomography (ERT)

Surveys – ERT vs. Horizontal Profiling (CST)

Surveys – Resistivity Tomography (ERT)

- Several (up to some hundred) electrodes are plugged into the ground, either on a profile line or distributed in two dimensions.
- A programmable channel selector replays a defined sequence of usage of the electrodes as current or potential electrode pairs.
- The method is also called electric tomography, in particular if the electrodes are distributed in two dimensions.
FREIBURG

Surveys – Resistivity Tomography (ERT) Apparent resistivity [Ωm] Pseudo depth [m] x [m]

The Wenner (α) configuration is most widely used, but all other configurations are also possible.

Surveys – Resistivity Tomography (ERT)

Surveys – Electrodes

Current and potential electrodes are technically identical. Criteria (in particular for the potential electrodes):

Contact resistance to the ground should be low.

Contact voltage should be small.

- Usage of nonpolarizable electrodes, e.g., copper core in CuSO₄ solution in a porous clay cylinder.
- Simple steel electrodes can be used with modern central units that are able to compensate contact voltages automatically.

Surveys – Horizontal Profiling

Comparison between planting the current electrode directly into a tree trunk versus into the ground near the tree's base: left - normalized potential, right – normalized resistivity profile

FREIBURG

Surveys – Electrodes

- Power source (constant current),
- voltmeter, and
- channel selector (for multi-electrode equipment)
- are mostly combined in one unit.
- Power up to about $1000\,W$
- Currents mostly between 10 mA and 1 A
- Voltages (between the current electrodes) up to some 1000 V
- Types of current: DC, low-frequency AC or switched DC with changing polarity

Surveys

Apparent Resistivity

In a inhomogeneous medium,

$$o_a = K \frac{U}{I}$$

is called the apparent resistivity obtained from one measurement.

- ρ_a is the resistivity of a homogeneous medium that would yield the same result for the considered electrode configuration.
- ρ_a is not the real resistivity at any depth.
- The larger the offset is, the bigger is the contribution of deep regions to ρ_a.

FREIBURG

Vertical Sounding in the Two-Layer Case

Source: Knödel et al., Handbuch zur Erkundung des Untergrundes von Deponien und Altlasten, Vol. 3

Vertical Sounding in the Two-Layer Case

Vertical Sounding in the Two-Layer Case

Situation: Two homogeneous regions separated by a horizontal interface. Target properties:

- $ho_1 =$ resistivity of the upper layer
- ρ_2 = resistivity of the lower region
 - d = thickness of the upper layer

Procedure: ρ_a is measured for several offsets AB (Wenner or Schlumberger configuration).

Data analysis can be performed graphically because $\frac{\rho_a}{\rho_1}$ only depends on $\frac{\rho_2}{\rho_1}$ and $\frac{AB/2}{d}$.

Vertical Sounding in the Two-Layer Case

UNI

Scaling Behaviour

Rescaling the resistivities: If $\rho(\vec{x})$ is changed by the same factor λ everywhere, ρ_a changes by the same factor λ .

Spatial scaling: Stretching the entire system (including the positions of the electrodes) horizontally and vertically by a factor λ :

- If I is kept constant, all potentials change by the factor $\frac{1}{\lambda}$.
- K changes by the factor λ .

$\rho_{\textit{a}}$ remains the same.

Consequence for the two-layer case: For any given electrode configuration at variable offset, $\frac{\rho_a}{\rho_1}$ depends only on $\frac{\rho_2}{\rho_1}$ and $\frac{AB}{d}$ (or $\frac{AB/2}{d}$ or $\frac{a}{d}$).

Wenner and Schlumberger Configurations in the Two-Layer Case

Graphical Data Analysis in the Two-Layer Case

FREIBURG

Source: Schmidt et al., Die Erde: Der dynamische Planet (CD-ROM)

Graphical Data Analysis in the Two-Layer Case

Graphical Data Analysis in the Two-Layer Case

Analysis in the Two-Layer Case

material with greater resistivity lies below the interface

 material with greater resistivity lies above the interface

Analysis in the Two-Layer Case

constant resistivity

constant depth

Analysis in the Two-Layer Case

Analysis in the Three-Layer Case

Analysis in the Three-Layer Case

Multi-Layer Case

Source: Laurent Marescot, 2010

Multi-Layer Case

To characterize different material using geophysics, a contrast must exist (i.e. a difference in the physical properties)

Multi-Layer Case

2-Layer Case

- The result is more or less unique if a sufficient range of offsets is covered.
- The procedure can also be applied to gently dipping interfaces.
- This method has only historical and educational meaning. Practically, numerical inversion is preferred.

FREIBURG

N-Layer Case

- Must be inverted numerically. Resistivities and thicknesses of the layers are adjusted to obtain the best fit to the measured apparent resistivities.
- The uppermost layer has a strong influence on the result.
- A deep, thin layer with a high contrast in resistivity may have a similar effect as a thicker layer with a lower contrast in resistivity.
- In the standard inversion procedure of vertical sounding, the number of layers is given, and thicknesses and resistivities are adjusted.
 Different numbers of layers may lead to strongly different results.

↓

Quantitative analysis often hinges on independent information, e.g., from seismics or boreholes.

Penetration Depth of Current

Half of the current penetrates deeper than half of the total offset (AB/2), but

- the entire current must also pass shallow regions, and
- the potential electrodes are at the surface.

Typical depth of investigation is lower than AB/2.

Principle of the Sensitivity Analysis and Depth of Investigation Characteristic formula

$$\Delta \rho \sim \rho I$$

$$F(z) = \frac{2I_A}{\pi} \frac{z}{\left(r_{AM}^2 + 4z^2\right)^{1.5}}$$

$$F_4(z) = \frac{2zI_A}{\pi} \left[\left(r_{AM}^2 + 4z^2\right)^{-1.5} - \left(r_{AN}^2 + 4z^2\right)^{-1.5} - \left(r_{BM}^2 + 4z^2\right)^{-1.5} + \left(r_{BN}^2 + 4z^2\right)^{-1.5} \right]$$

Source: Butler, 2015 after Roy and Apparo, 1971

Principle of the Sensitivity Analysis and DIC formula

- Assume a given configuration of electrodes in a homogeneous medium with a resistivity ρ .
- Assume that ρ is increased (decreased) by a small amount δρ in a small region around a given point x in the subsurface.
- Determine how this small change affects the voltage between M and N if the current between A and B is given.

Sensitivity of the Wenner Configuration

Sensitivity at z/a = 0.1

Sensitivity of the Wenner Configuration

Sensitivity of the Wenner Configuration

Sensitivity of the Wenner Configuration

Sensitivity of the Wenner Configuration

Sensitivity of the Wenner Configuration

Sensitivity of the Wenner Configuration

Sensitivity of the Wenner Configuration

Sensitivity of the Wenner Configuration

FREBURG

Sensitivity / Signal contribution section of the Wenner Configuration

Sensitivity maps for Wenner, Schlumberger, double-dipole, & partial

Sensitivity of the Wenner Configuration

FREIBURG

Sensitivity of the Wenner Configuration

- Sensitivity is always highest at low depth, in particular close to the electrodes M and N.
- Sensitivity changes its sign at low depths.
- Horizontally integrated sensitivity is highest at $z \approx 0.32$ a.
- Median of the horizontally integrated sensitivity distribution is at $z \approx 0.52$ a.

Regions with z < 0.52 a and z > 0.52 a contribute equally to the sensitivity in total.

0.52 a is often assumed as the typical depth of investigation.

Pseudosections

1. Normal fault

- 2. High contrast two-layer case
- 3. Low contrast two-layer case

- 1. Section with a lateral Discontinuity
- 2. Lateral homogenous three-layer section