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1 Yield criteria for elastic media

Elastic behavior is lost at large deformation, where the limit strongly depends
on the material. It also depends on the material as well as on temperature
whether brittle failure occurs or whether the deformation turns into a ductile
type.

Mechanical yield criteria are usually formulated in terms of the stress tensor
σ, although the change in internal structure that is responsible for yield is
described by the strain tensor ε. The primary reason for preferring stress
in this context is that stress can be measured more easily in laboratory
experiments than strain. As stress and strain are directly related to each
other for elastic media, both descriptions are in principle equivalent.

The generic form of a yield criterion based on stress reads

f (σ) ≥ f crit (1)

where f is a function of the stress tensor and f crit a threshold value depend-
ing on the material.

There are two main types of yield criteria concerning the spatial structure.
Anisotropic criteria predict yield at each point taking into account potential
failure planes with different orientations explicitly. Such criteria can predict
that a material could, e.g., likely break along a horizontal plane for a specific
stress tensor, but be stable along a vertical plane.

Isotropic criteria only predict a threshold of failure at each point without
being able to predict the most likely orientation of the failure plane. Isotropic
criteria are typically used for the transition to ductile behavior. The von-
Mises criterion and the Drucker-Prager criterion are the most widely used
isotropic yield criteria.

Anisotropic criteria are typically based on the shear stress acting on a po-
tential failure plane. The simplest criterion – named after Henri Tresca –
simply assumes that brittle failure occurs if the shear stress exceeds a given,
material-dependent threshold. However, the threshold of failure in general
increases under compressive normal stress, so that the normal stress acting
on the potential failure plane should also be taken into account.

Yield criteria based on shear stress σs and normal stress σn can be repre-
sented graphically in a Mohr diagram where σs is plotted vs. σn (Fig. 1).
Normal stress can be considered as a scalar property. In our sign conven-
tion, positive normal stresses are tensile, while negative normal stresses are
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Figure 1: Mohr diagram. The property at the y axis denoted τn is the shear
stress, σs in our notation. Source: Wikipedia.

compressive. Shear stress, however, is a vector in a plane. The Mohr di-
agram and yield criteria based on shear stress use σs as the length of this
vector. Consequently, the lower half of the Mohr diagram should not be
plotted in 3D considerations. In 2D, however, it would be possible to assign
a direction to the shear stress (dextral / sinistral).

The green area between the three circles describes all combinations of σn

and σs that can be achieved by considering planes with different orientations
at a given point. Instead of proving this result theoretically, we investigate it
in an example in assignment 3. The centers and radii of the three circles are
defined by the values of the principal stresses σ1, σ2, and σ3. The notation
of Fig. 1 assumes σ1 ≥ σ2 ≥ σ3.

If planes spanned by two of the principal stress directions are considered,
the combinations of σn and σs are on either of the three circles, which is
verified by example in assignment 2.
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Figure 2: Illustration of the Mohr-Coulomb criterion. The direction to
the right corresponds to compressive normal stresses (negative in our sign
convention). Source: geohazards.info

2 The Mohr-Coulomb criterion

In the context of slope failure in both bedrock and unconsolidated layers,
the Mohr-Coulomb criterion is widely used. It predicts a linear increase of
the maximum shear stress σcrit

s that the material can bear with increasing
compressive normal stress:

σcrit
s = ∓ξ σn + C (2)

where our sign convention involves the minus sign (a bit unusual in this
context).

The Mohr-Coulomb criterion contains two parameters. The nondimensional
coefficient of internal friction ξ is the slope in the Mohr diagram (Fig. 2). It
is often expressed as an angle – the angle of internal friction φ – according
to ξ = tanφ. The second parameter – the cohesion C – is the intercept
with the σs axis. It has the same unit as stress (Pa) and describes the shear
stress that the material can bear at zero normal stress. Table 1 gives some
typical values of C and φ.
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Table 1: Typical parameter values of the Mohr-Coulomb criterion of mate-
rials relevant in the context of mass movements.

C φ

surface rocks 10 MPa 30–50◦

soils 0–100 kPa 20–40◦

snow 0–500 Pa 15–30◦

3 The factor of safety

The factor of safety (FoS) is a widely used concept in the context of failure
and not restricted to mechanical failure. If L is any measure of the actual
load and Lcrit the load where failure occurs, the factor of safety is defined
by

FoS =
Lcrit

L
. (3)

The factor of safety thus states by which factor the actual load could be
increased until failure occurs.

The factor of safety according to the Mohr-Coulomb criterion is

FoS =
σcrit

s

σs
=

−ξ σn + C

σs
. (4)

If FoS ≤ 1 at any point for any orientation, crack formation would be
initiated there. Accordingly, we call this definition the local factor of safety
in the following.

4 Stability against translational slides

In assignment 1 we computed the stress field in a straight slope with given
a slope angle β. This result can be used for estimating the stability of
the slope against translational sliding, i. e., against failure along a surface-
parallel plane in a given depth. If we use the coordinate system aligned

to the slope, the normal vector is ~n =
(

0
0
1

)
. Then the normal stress is

σn = ρgx3 cosβ, and the shear stress σs = −ρgx3 sinβ. The x3 axis is
pointing upward (normal to the surface), so that x3 = −h cosβ where h is
the depth below the surface measured normal to the surface (not vertically).
Inserting the stresses into Eq. 4 yields

FoS =
ρgh tanφ cosβ + C

ρgh sinβ
=

tanφ

tanβ
+

C

ρgh sinβ
. (5)
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Rock, ρ = 2500 kg/m
3
, φ = 40°, C = 10 MPa

Soil, ρ = 1500 kg/m
3
, φ = 30°, C = 10 kPa

Snow, ρ = 500 kg/m
3
, φ = 20°, C = 100 Pa

Figure 3: Maximum stable slope angle against translational failure for dif-
ferent materials.

This value is the same along the entire potential slip surface, so that it can
also be used as a criterion for the stability of the slope against translational
failure.

As an immediate consequence, the slope is stable (FoS > 1) for β < φ,
i. e., if the slope is less steep than the angle of internal friction. Cohesion
results in an increasing factor of safety. Figure 3 shows examples for typical
properties of solid rock, soil, and snow. Non-fractured rocks are in principle
always stable due to the high cohesion. Typical soils are also quite stable at
moderate slope angles. Instability if often triggered by water (see Sect. 10).

According to Eq. 5, the additional stability due to cohesion decreases with
depth.

5 Scaling properties

The result that the additional stability due to cohesion decreases with depth
is not limited to translational slides. It is a general scaling property of the
steady-state version of Cauchy’s equations of motion,

div(σ) + ρ~g = ~0 (6)
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(in our sign convention).

Let us assume two slopes consisting of the same material and with the
same geometry except for a scaling factor f , which means that slope 2 is
stretched by a factor f in all directions compared to slope 1. Then the
gravitational force ρ~g is the same in both slopes, and thus also div(σ).
As the divergence operator consists of first-order spatial derivatives, the
stress tensor σ) in slope 2 must be by the factor f greater than in slope 1.
Rescaling the normal stress and the shear stress in Eq. 4 by f yields

FoS =
−ξ f σn + C

f σs
=

−ξ σn + C
f

σs
. (7)

Thus, the local FoS in slope 2 would (only) be the same as that of slope 1
at each point if the cohesion at slope 2 is by the factor f larger than at
slope 1. If the cohesion was the same for both materials, the larger slope
would have a lower local FoS at each point.

6 Limit equilibrium models

Failure of solid rock is described by crack propagation, which is a progressive
process. Once a small crack has formed, the tips of the crack are exposed
to high stresses, so that crack propagation continues. This is in particular
relevant for open cracks, i. e., cracks with a tensile component.

Open cracks, however, hardly form in unconsolidated materials under grav-
ity. Local instability will usually result in a shear displacement and thus to
some redistribution of shear stress in the neighborhood. However, stability
is not fully lost at the location where the displacement occurs; internal fric-
tion and cohesion may be almost as high as they were originally. In sum,
shear stress is preferably redistributed from domains with a local FoS < 1
to regions with a FoS > 1. So that the local FoS along a potential failure
surface becomes more homogeneous. In other words, parts of a potential
failure plane with different levels of stability rather support each other than
destabilize each other in unconsolidated material.

This leads to the limit equilibrium concept. In principle, limit equilibrium
models integrate the actual shear stress and the critical shear stress over a
potential slip surface and combine the resulting total forces to an overall
FoS.

However, the limit equilibrium concept tends to overestimate the stability.
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Figure 4: Geometry of a rotational slide in a vertical cross section.

Therefore, engineering applications typically do not use FoS = 1 as a strict
limit, but define three levels:

FoS ≥ 1.3 stable (safe)
1 < FoS < 1.3 conditionally stable
FoS ≤ 1 actively unstable

Parts of the literature use FoS = 1.5 instead of 1.3 for the distinction
between stable and conditionally stable.

7 Rotational failure

Translational failure considered in Sect. 4 theoretically requires an infinite
slope. However, we already learned that the stabilizing effect of cohesion
decreases with increases depth, so that other geometries are preferred on
slopes of limited size, provided that a sufficient depth to bedrock is available.

In a vertical cross section in direction of potential movement (usually the
steepest slope direction), a circular slip surface is preferred to other shapes.
It is the only geometry where material can be moved without deforming the
displaced body internally. For this reason, simple models of slope instability
consider rotational failure in a vertical cross section (Fig. 4).

Models of rotational failure typically express the FoS in terms of torques,
also called moments of force. If a force ~F acts at the point ~x , the respective
torque around the origin is

~M = ~x × ~F . (8)
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The total torque acting on the potentially unstable body can be computed
in two different ways. First, we can integrate the weight over the volume
of the body,

~M =

∫
~x × ρ~g d3x . (9)

Alternatively, we can integrate the stress over the potential failure plane,

~M =

∫
~x × σ~n dA, (10)

where ~n is the upper normal vector, so that ~x = −r~n, and thus

~M = r

∫
−~n × σ~n dA. (11)

It we consider a cross section in the x1-x3 plane, only the component of ~M
normal to this plane, i. e., M2 is relevant. It is easily recognized that the
second component of the term ~n× σ~n in Eq. 11 equals the shear stress σs

as defined in assignment 2 (positive to the right, negative to the left). This
means that the component of ~M coming out out the paper (opposite to x2)
is

M = −M2 = r

∫
σs dA, (12)

where we call the driving torque (−M2) M for simplicity.

The calculation of the critical torque Mcrit where failure occurs is the same,

Mcrit = r

∫
σcrit

s dA, (13)

so that the overall FoS of the limit equilibrium approach is

FoS =
Mcrit

M
=

∫
σcrit

s dA∫
σs dA

. (14)

The radius r that occurs in both the dominator and the denominator was
canceled here.

A small section of the potential failure surface of width w in x2 direction
covering an angle increment δα (measured in radians) has a surface area of

δA = w r δα (15)

Thus, the integrals in Eq. 14 can be replaced by integrals of the angle α,∫
... dA = w r

∫
... dα. (16)
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Alternatively, a coordinate x in horizontal (x1) direction can be used. It is
related to α by

x = − r sinα− const, (17)

so that
dx

dα
= − r cosα. (18)

As a consequence, the integral over the area can also be expressed in the
form ∫

... dA = wr

∫
... dα = wr2

∫
...

cosα
dx . (19)

When calculating the overall FoS, the factors wr and wr2, respectively, can
be canceled, so that

FoS =

∫
σcrit

s dA∫
σsdA

=

∫
σcrit

s dα∫
σsdα

=

∫ σcrit
s

cosαdx∫
σs

cosαdx
. (20)

For practical calculations, the integrals are replaced by discrete sums, so
that

FoS ≈
∑

i σ
crit
si δαi∑

i σsi δαi
≈
∑

i
σcrit

si
cosαi

δxi∑
i

σsi
cosαi

δxi
. (21)

8 Fellenius’ method

The method introduced by W. Fellenius (1929) was the first model for ro-
tational slope failure taking into account the variation in σn and thus σcrit

s

along the slip circle. It is still the simplest model in this context. Compared
to the continuum mechanics approach considered in detail in assignments
1–5, this method introduces some simplifications that become increasingly
relevant at steep slope angles. In turn, it is applicable to arbitrary topo-
graphic profiles, while our analytical solution of Cauchy’s equations was
restricted to the infinite, straight slope.

Fellenius’ method was originally developed for a set of discrete vertical slices.
For the reason it is often referred to as the ordinary method of slices (OMS).
It can, however, also be developed in terms of the stress tensor, which makes
it easier to recognized the simplifications.

It was recognized in assignment 1 that the largest component of the stress
tensor is approximately σ33 ≈ −ρgh at moderate slope angles, where h
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is the the vertical depth below the surface. Fellenius’ method neglects all
other stress components, i. e., assumes

σ =

 0 0 0
0 0 0
0 0 −ρgh

 . (22)

If we define the angle α as shown in Fig. 4 and the normal and tangent
vectors as in assignment 2,

~n =

 sinα
0

cosα

 and ~t =

 cosα
0

− sinα

 , (23)

we obtain

σn = −ρgh cos2 α (24)

σs = ρgh cosα sinα (25)

σcrit
s = C − σn tanφ = C + ρgh cos2 α tanφ (26)

Then the local factor of safety at each point is

FoSloc =
σcrit

s

σs
=

C + tanφ ρgh cos2 α

ρgh sinα cosα
=

tanφ

tanα
+

C

ρgh cosα sinα
. (27)

This expression is almost the same as the FoS against translational sliding
(Eq. 5) at the point where the slip circle is parallel to the surface (α = β).
The only difference is the term cosα in the denominator of the last term.
This is however, only a matter of the definition of H. When considering
translational sliding in Sect. 4, h was measured normal to the surface, while
it is measured vertically here.

The respective overall FoS of the limit equilibrium approach (Eq. 20) is

FoS =

∫ σcrit
s

cosαdx∫
σs

cosαdx
. =

∫ (
C

cosα + tanφ ρgh cosα
)
dx∫

ρgh sinα dx
. (28)

The respective version of this equation for discrete slices (Eq. 21) reads

FoS ≈

∑
i

(
C

cosαi
+ tanφ ρghi cosαi

)
δxi∑

i ρghi sinαi δxi
. (29)

In the literature, this equation is often used for slices of constant width
δxi = δx . The factors δx in the dominator and the denominator can be
canceled in this case.
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9 Bishop’s method

All limit equilibrium models assume that different points of the slip circle
support each other by sharing load and strength. This idea is incorporated
in the concept of the overall FoS. Fellenius’ method – the simplest model
in this context – assumes no further interaction between different points at
the slip circle or between different slices in a discrete representation.

More elaborate models take such interactions, often called interslice forces,
into account. These models typically predict a higher stability than Fel-
lenius’ model, i. e., a greater FoS. As a simple example, imagine that the
material within the slip circle expands. This will lead to an increase in nor-
mal stress at the slip circle and thus to an increase in critical shear stress.
Provided that the actual shear stresses do not increase, this will result in
an increasing FoS. Climbing between two vertical walls would be another
example. Friction climbing is in general only possible as long as the surface
is not too steep, but if your feet are in touch with two walls in opposite
direction, you could increase the normal force and this the maximum friction
force almost arbitrarily.

As discussed in Sect. 7, the FoS against rotational failure is defined as a
ratio of torques (Eq. 14). According to Eq. 9, the actual torque that defines
the denominator can be calculated from the geometry of the slip circle and
from the density pattern (if spatially variable) alone. The stress inside the
slip circle and thus also what is considered interslice forces cannot change
the actual torque. So the actual torque is the same in all limit equilibrium
models. As a consequence, the denominators of the expressions for the FoS
will always look like those found for Fellenius’ method (Eqs. 28 and 29).

The critical torque, however, depends on the normal stress at the slip circle
and can be changed by stresses in the slip circle. So the denominator of the
expression for the FoS differs from model to model.

In its original form, the approach introduced by A. W. Bishop (1955) in-
troduced a horizontal force acting on each slice. Neither the balance of
forces according to Newton’s law nor the balance of torques was taken into
account. In order to keep the formalism consistent with the previous con-
siderations, we write Bishop’s approach in terms of the stress tensor at the
slip circle. Compared to Fellenius’ approach (Eq. 22), Bishop’s approach
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introduces only one additional entry σ13 in the stress tensor, so that

σ =

 0 0 τ
0 0 0
0 0 −ρgh

 (30)

where τ may be different for different points.

Repeating the considerations of the previous section yields

σn = −ρgh cos2 α + τ cosα sinα (31)

σs = ρgh cosα sinα + τ cos2 α (32)

σcrit
s = C − σn tanφ = C + tanφ

(
ρgh cos2 α− τ cosα sinα

)
(33)

and thus a local factor of safety of

FoSloc =
σcrit

s

σs
=

C + tanφ
(
ρgh cos2 α− τ cosα sinα

)
ρgh cosα sinα + τ cos2 α

. (34)

This equation can be rewritten in the form

τ =
C + tanφ ρgh cos2 α− FoSloc ρgh cosα sinα

FoSloc cos2 α + tanφ cosα sinα
. (35)

We can now insert this expression for τ into Eqs. 31, 32, and 33 and arrive
at expressions for the stresses where FoSloc occurs as an unknown property
instead of τ . After bringing the terms to a common denominator and
simplifying the results as far as possible, we arrive at

σn =
C tanα− FoSloc ρgh

FoSloc + tanφ tanα
(36)

σs =
C + tanφ ρgh

FoSloc + tanφ tanα
(37)

σcrit
s =

C + tanφ ρgh

1 + tanφ tanα
FoSloc

(38)

At this point it should be taken into account that this stress tensor defined
in Eq. 30 is not symmetric. This asymmetry violates the conservation of
angular momentum. If we used Eq. 37 for calculating the driving torque in
the denominator of the overall FoS, the result would be wrong. However,
we already know that this driving torque is the same for all limit equilibrium
models, so we can use the expression for σs from Fellenius’ method (Eq. 25).
This leads to an overall factor of safety of

FoS =

∫ σcrit
s

cosαdx∫
σs

cosαdx
=

∫ C+tanφ ρgh

cosα+ tan φ sin α
FoSloc

dx∫
ρgh sinα dx

. (39)
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This expression still involves the unknown local factor of safety at the right-
hand side. The key point of Bishop’s method is to assume that FoSloc at
the right-hand side is the overall FoS, so that

FoS =

∫ C+tanφ ρgh

cosα+ tan φ sin α
FoS

dx∫
ρgh sinα dx

≈

∑
i

C+tanφ ρghi

cosαi+
tan φ sin αi

FoS

δxi∑
i ρghi sinαi δxi

. (40)

It is, however, not possible to factor out the term FoS at the right-hand side.
So it is not possible to compute the FoS directly. A fixed-point iteration
is typically used here. Fixed-point iterations are in general used for solving
equations of the type x = f (x) where f is a given function. The idea is to
start with a first estimate x0 and the to compute x1 = f (x0), x2 = f (x1),
x3 = f (x2) until the difference between two subsequent values is sufficiently
small. This scheme converges rapidly if the function f weakly depends on x ,
which is the case for Eq. 40. This means that we start with a first estimate
of the FoS, e. g., from Fellenius method and insert it into the right-hand
side of Eq. 40. This yields an improved estimate of the FoS, which is then
inserted into the right-hand side. The procedure converges rapidly here, so
usually only a few steps of iteration are required.

We can also compute a local factor of safety for Bishop’s method, although
it is only useful for illustration. Replacing FoSloc by FoS in Eq. 39 does
not mean that FoSloc is indeed constant. Inserting σcrit

s from Eq. 38 with
FoSloc = FoS and σs from Fellenius method (Eq. 25) yields

FoSloc =
σcrit

s

σs
=

C+tanφ ρgh

1+ tan φ tan α
FoS

ρgh cosα sinα
=

C
ρgh + tanφ(

cosα + tanφ sinα
FoS

)
sinα

. (41)

10 The role of water

Water is the most important time-dependent factor in slope stability. The
effect of water is twofold. First, it influences the stress tensor and thus σn

and σs. Second, the stability at a given stress may change, i. e., the angle
of internal friction φ and the cohesion C may change. This will result in
changes in the critical shear stress σcrit

s at a given normal stress σn.

The immediate effect of water on φ is typically small, in particular for soils
with little cohesion. The cohesion itself typically decreases with increasing
water content, particularly for clayey soils. However, an opposite effect,
i. e., an increase of cohesion with increasing water content, was also found
in some experiments.
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The effect of water on the stress tensor is often stronger than the effect
on the parameters φ and C . First, the additional weight of the water has
to be taken into account. So the density ρ is no longer the density of the
dry soil, but has to be replaced by the total density including the water in
the pores. A uniform increase in ρ would increase all stresses by the same
factor. In Sect. 5 we have learned that the cohesion becomes less relevant
if the stresses increase. Thus, an increase in density will result in a lower
FoS.

The most important effect, however, arises from the fluid pressure. In order
to understand how fluid pressure affects stability, we need some fundamen-
tals of poroelasticity. The concept of poroelasticity was originally developed
in the context of hydrocarbon reservoirs, but can be directly applied to slope
failure, too. Both the stress tensor σ and the strain tensor ε are considered
on a macroscopic scale and not as the stress at the surface of individual
grains or the deformation of individual grains, respectively.

Starting point of the theory is the inverse form of Hooke’s law developed in
Sect. 3.7 of the continuum mechanics notes,

ε =
1

2µ
σ − λ

2µ(λ+ 2
3µ)

σ 1. (42)

This form of Hooke’s law describes the strain as a function of the stress.
Let us now assume a positive fluid pressure p in the pores. If the stress
remains constant, the fluid pressure will cause a macroscopic expansion of
the porous medium (while compressing the individual grains). In Sect. 3.6
of the continuum mechanics notes we learned that isotropic compression or
expansion can be described by the bulk modulus K = λ+ 2

3µ according to

σ = K εv . (43)

If we assume σ = −p (compressive) and take into account that a positive
pressure causes macroscopic expansion, this leads to

εv =
p

K
, (44)

and thus
ε =

p

3K
1. (45)

This would, however, only be true if expansion by fluid pressure was the
same as contraction under a macroscopic stress. This is not the case in
general. In the extreme case of soft grains with a rigid backbone, even the
entire effect of the fluid pressure would be accomodated by contraction of
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the individual grains. In general, the strain caused by fluid pressure is lower
than the strain caused by macroscopic stress. Thus, the bulk modulus K
must be replaced by another modulus H with H ≥ K . Adding the respective
term to Eq. 42 yields

ε =
1

2µ
σ − λ

2µ(λ+ 2
3µ)

σ 1 +
p

3H
1. (46)

The first two factors satisfy the relation

1

2µ
− λ

2µ(λ+ 2
3µ)

=
1

3(λ+ 2
3µ)

=
1

3K
, (47)

so that the third factor can be split up into

p

3H
= p

K

H

(
1

2µ
− λ

2µ(λ+ 2
3µ)

)
. (48)

Inserting this result into Eq. 46 yields

ε =
1

2µ

(
σ +

K

H
p1

)
− λ

2µ(λ+ 2
3µ)

(
σ +

K

H
p

)
1. (49)

This relation is basically the same as Eq. 42, but with σ + K
H p1 instead of

σ. The ratio

α =
K

H
(50)

is denoted Biot’s parameter. As H ≥ K , it is in the range 0 ≤ α ≤ 1.
Biot’s parameter quantifies to effect of fluid pressure in relation to the effect
of macroscopic stress. For igneous rocks with low porosities, the rock matrix
provides a quite rigid backbone, resulting in low values of α in the range
between about 0.2 and 0.5. For sandstone it is typically in the range between
about 0.6 and 0.9, depending on the porosity. For soils, the structure of the
matrix is rather weak compared to the individual grains, so α is close to 1
here.

The stress tensor σ and the fluid pressure p are often combined to an
effective stress tensor

σeff = σ + α p 1. (51)

Equation 49 then reads

ε =
1

2µ
σeff − λ

2µ(λ+ 2
3µ)

σeff1. (52)
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This means that the effective stress at a given fluid pressure causes the same
deformation as the effective stress would cause in absence of fluid pressure.
It thus makes sense to assume that failure depends on the effective stress
instead of the stress itself.

The difference between σeff and σ is isotropic. Thus, normal stresses
change according to

σn,eff = σn + αp, (53)

so they become by αp less compressive. As a consequence, the critical shear
stress is reduced by αp tanφ, while the actual shear stress is not affected.
The reduction in critical shear stress due to the reduction of normal stress
is typically the strongest effect of water on slope stability.
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