Time-Dependent Models and Ordinary Differential Equations

Stefan Hergarten

Institut für Geo- und Umweltnaturwissenschaften Albert-Ludwigs-Universität Freiburg

Examples of Time-Dependent Models

Examples From My Own Research

- [Val Pola rock avalanche](http://hergarten.at/extra/valpola.mp4)
- [Snow avalanche hitting a pond](http://hergarten.at/extra/pond.mp4)
- [Fluvial and glacial landform evolution](http://hergarten.at/openlem/firstexample/glaciers.mp4)

Examples Considered in This Class

- Hubbert's model of oil production
- Predator-prey population dynamics
- **•** Fluvial erosion
- [Oscillations of a lamp during an earthquake](http://hergarten.at/extra/pendulums.gif)
- Planetary motion and meteorite impact
- Flow of ice

Examples of Time-Dependent Models

Radioactive Decay

$$
\frac{d}{dt}u(t) = -\lambda u(t)
$$

where

 $t =$ time $u(t)$ = amount at time t λ = parameter

Unlimited Growth

$$
\frac{d}{dt}u(t) = \lambda u(t)
$$

Simplest model of population dynamics, where

 $u(t)$ = population at time t

Logistic Growth

$$
\frac{d}{dt}u(t) = \lambda u(t) - \mu u(t)^2
$$

where

 λ, μ = parameters

Ordinary Differential Equations

Structure of the Previous Problems

Unknown function $u(t)$

Equation that defines the rate of change $\frac{d}{dt}u(t)$ $(= u'(t) = \dot{u}(t))$

Definition: Ordinary Differential Equation

 $+$

An ordinary differential equation is an equation that involves the derivative(s) of an unknown function (and in many cases also the function itself).

Ordinary Differential Equations

Differential Equations of First and Second Order

• A differential equation of first order involves only first-order derivatives. It can be written in the form

$$
\frac{d}{dt}u(t) = F(u(t), t)
$$

and directly defines the actual rate of change in the variables.

A second-order differential equation involves first and second-order derivatives and can be written in the form

$$
\frac{d^2}{dt^2}u(t) = F\left(u(t), \frac{d}{dt}u(t), t\right).
$$

Radioactive Decay Chain

...

$$
\frac{d}{dt}u_1(t) = -\lambda_1 u_1(t)
$$
\n
$$
\frac{d}{dt}u_2(t) = \lambda_1 u_1(t) - \lambda_2 u_2(t)
$$

$$
\frac{d}{dt}u_{n-1}(t) = \lambda_{n-2} u_{n-2}(t) - \lambda_{n-1} u_{n-1}(t) \n\frac{d}{dt}u_n(t) = \lambda_{n-1} u_{n-1}(t)
$$

Ordinary Differential Equations

Systems of Ordinary Differential Equations

Multiple unknown functions $u_1(t)$, $u_2(t)$, ..., $u_n(t)$

 $+$

=

Equations that involve derivatives of these functions

Order of a System of Differential Equations

Order of a system of differential equations

Order of the highest derivative that occurs

$$
\frac{d}{dt}A(t) = -k_1 A(t) B(t) + k_2 C(t) \n\frac{d}{dt}B(t) = -k_1 A(t) B(t) + k_2 C(t) \n\frac{d}{dt}C(t) = k_1 A(t) B(t) - k_2 C(t)
$$

SIR Model

$$
\frac{d}{dt}S(t) = -\beta S(t) I(t)
$$
\n
$$
\frac{d}{dt}I(t) = \beta S(t) I(t) - \gamma I(t)
$$
\n
$$
\frac{d}{dt}R(t) = \gamma I(t)
$$

$$
\begin{array}{lcl}\n\text{Predator-Prey Model} \\
\frac{d}{dt}P(t) & = & \lambda \left(1 - \frac{P(t)}{c}\right) P(t) - s P(t) Q(t) \\
\frac{d}{dt}Q(t) & = & \mu \left(\frac{s P(t)}{n} - 1\right) Q(t)\n\end{array}
$$

Particle in a Gravity Field

\n
$$
\frac{d^2}{dt^2} \vec{u}(t) = -\frac{Gm}{|\vec{u}(t)|^3} \vec{u}(t)
$$

Ordinary Differential Equations

Differential Equations of Second Order

General form:

$$
\frac{d^2}{dt^2}u(t) = F\left(u(t), \frac{d}{dt}u(t), t\right)
$$

Introduce an additional variable $v(t) = \frac{d}{dt}u(t)$. ۲

$$
\frac{d}{dt}u(t) = v(t)
$$
\n
$$
\frac{d}{dt}v(t) = F(u(t), v(t), t)
$$

Solving Ordinary Differential Equations

Initial Conditions

Each variable in a first-order system requires a given initial value at a time t_0 .

Analytical Solution of Differential Equations

Although this topic fills books and classes for engineers, only a small number of differential equations can be solved analytically.

Numerical approximation required in most cases.

The Finite-Difference Method

- An approximate solution is computed only at given times t_1 , t_2 , t_3 , ..., starting from the given initial state $u(t_0)$.
- Computing the solution at the time t_{n+1} using the known solution at the time t_n is called a (forward) time step.
- In many cases, equidistant time steps of the same length δt are used, so that $t_1 = t_0 + \delta t$, $t_2 = t_1 + \delta t$, $t_3 = t_2 + \delta t$, ...
- Derivative $\frac{d}{dt} u(t)$ is approximated by a difference quotient.

Right-Hand Difference Quotient

$$
\frac{d}{dt}u(t) \approx \frac{u(t+\delta t)-u(t)}{\delta t}
$$

Left-Hand Difference Quotient

$$
\frac{d}{dt}u(t) \approx \frac{u(t)-u(t-\delta t)}{\delta t}
$$

Central Difference Quotients

$$
\frac{d}{dt}u(t) \approx \frac{u(t+\delta t)-u(t-\delta t)}{2\delta t}
$$

or

$$
\frac{d}{dt}u(t+\frac{\delta t}{2})\,\,\approx\,\,\frac{u(t+\delta t)-u(t)}{\delta t}
$$

The Explicit Euler Scheme

Differential equation

$$
\frac{d}{dt}u(t) = F(u(t), t)
$$

Insert a right-hand difference quotient.

$$
\frac{u(t+\delta t)-u(t)}{\delta t} \approx F(u(t), t),
$$

$$
u(t+\delta t) \approx u(t) + \delta t F(u(t), t)
$$

The Fully Implicit Euler Scheme

Differential equation

$$
\frac{d}{dt}u(t) = F(u(t), t)
$$

Insert a left-hand difference quotient.

$$
\frac{u(t+\delta t)-u(t)}{\delta t} \approx F(u(t+\delta t), t+\delta t)
$$

$$
u(t+\delta t) \approx u(t) + \delta t F(u(t+\delta t), t+\delta t)
$$

Examples of Explicit and Implicit Discretization

Radioactive decay:

Explicit:

$$
u(t+\delta t) \approx u(t)+\delta t\,(-\lambda\,u(t))
$$

Fully implicit:

$$
u(t + \delta t) \approx u(t) + \delta t \left(-\lambda u(t + \delta t) \right)
$$

$$
u(t + \delta t) \approx \frac{u(t)}{1 + \delta t \lambda}
$$

Examples of Explicit and Implicit Discretization

Logistic growth: Explicit:

$$
u(t+\delta t) \approx u(t) + \delta t \lambda \left(1 - \frac{u(t)}{c}\right) u(t)
$$

Fully implicit:

$$
u(t + \delta t) \approx u(t) + \delta t \lambda \left(1 - \frac{u(t + \delta t)}{c}\right) u(t + \delta t)
$$

$$
u(t + \delta t)^{2} + u(t + \delta t) + u(t + \delta t) = 0
$$

Mixed Schemes

Mixture of t and $t + \delta t$ in the rate of change $F(u(t), t)$)

Example: logistic growth

$$
u(t+\delta t) \approx u(t) + \delta t \lambda \left(1-\frac{u(t)}{c}\right) u(t+\delta t)
$$

or

$$
u(t+\delta t) \approx u(t) + \delta t \lambda \left(1 - \frac{u(t+\delta t)}{c}\right) u(t)
$$

22 / 29

The Crank-Nicholson Scheme

Specific mixture of explicit and fully implicit Euler scheme:

$$
\frac{u(t+\delta t)-u(t)}{\delta t} \approx \frac{F(u(t),t)+F(u(t+\delta t),t+\delta t)}{2}
$$

$$
u(t+\delta t)-\frac{\delta t}{2}F(u(t+\delta t),t+\delta t) \approx u(t)+\frac{\delta t}{2}F(u(t),t)
$$

Advantages of the Different Schemes

Explicit: simple

Fully implicit: often stable for large δt Crank-Nicholson: high accuracy for $\delta t \rightarrow 0$; convergence of second order, i. e., error $\propto \delta t^2$ instead of δt

Explicit Schemes of Higher Order

An error $\propto \delta t^n$ with $n>1$ can also be achieved by appropriate explicit schemes, e.g., by the $4th$ order Runge-Kutta scheme

$$
u(t+\delta t) \approx u(t)+\delta t \frac{k_1+2k_2+2k_3+k_4}{6}
$$

with

$$
k_1 = F(u(t), t)
$$
 (like explicit Euler scheme)
\n
$$
k_2 = F(u(t) + \frac{\delta t}{2}k_1, t + \frac{\delta t}{2})
$$

\n
$$
k_3 = F(u(t) + \frac{\delta t}{2}k_2, t + \frac{\delta t}{2})
$$

\n
$$
k_4 = F(u(t) + \delta t k_3, t + \delta t)
$$

Analytical Considerations

Motivation

Although many differential equations cannot be solved analytically, several properties of the solution can often be obtained without numerical simulations.

Fixed Points

A fixed point is a solution which remains constant through time. The fixed points of a (system of) differential equation(s) are computed by solving

$$
\frac{d}{dt}u(t) = F(u(t)) = 0.
$$

Analytical Considerations

Stability of Fixed Points

A fixed point u_f is stable if the system approaches the fixed point if it is close to it. Stable fixed points are also called attractors.

For a single differential equation of first order: u_f is stable if

F(u) > 0 F (u) < 0 for u < u f u > u f

Alternative criterion:

$$
\frac{d}{du}F(u)|_{u=u_f} < 0
$$

Stability of the Fully Implicit Euler Scheme

A time step of the fully implicity Euler scheme cannot cross a stable fixed point.

Analytical Considerations

Nondimensional Variables

Idea: If the differential equation has a characteristic time t_c and / or a characteristic value u_c of the solution $u(t)$, introduce nondimensional variables

$$
\hat{t} = \frac{t}{t_c}
$$

$$
\hat{u}(\hat{t}) = \frac{u(t)}{u_c}
$$

$$
\frac{d}{d\hat{t}}\hat{u}(\hat{t}) = \frac{t_c}{u_c}\frac{d}{dt}u(t)
$$

Advantage: Each of the transforms reduces the number of model parameters by one.

