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Examples of Time-Dependent Models

Examples From My Own Research

@ Val Pola rock avalanche
@ Snow avalanche hitting a pond

o Fluvial and glacial landform evolution
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Examples Considered in This Class

Hubbert's model of oil production
Predator-prey population dynamics

Fluvial erosion

Oscillations of a lamp during an earthquake
Planetary motion and meteorite impact

Flow of ice
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http://hergarten.at/extra/valpola.mp4
http://hergarten.at/extra/pond.mp4
http://hergarten.at/openlem/firstexample/glaciers.mp4
http://hergarten.at/extra/pendulums.gif
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Radioactive Decay

d
—u(t) = —Au(t
S u(t) u(t)
where
t = time
u(t) = amount at time t
A = parameter
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Examples of Time-Dependent Models

Unlimited Growth

d
Eu(t) = Au(t)

Simplest model of population
dynamics, where

u(t) = population at time t
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Examples of Time-Dependent Models

Logistic Growth

%u(t) = au(t) — pu(t)?

where

A, 4 = parameters
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Ordinary Differential Equations

Structure of the Previous Problems

Unknown function u(t)
+

Equation that defines the rate of change

Lu(t) (= u'(t) = il1))

Definition: Ordinary Differential Equation

An ordinary differential equation is an equation
that involves the derivative(s) of an unknown
function (and in many cases also the function
itself).
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Ordinary Differential Equations

Differential Equations of First and Second Order

o A differential equation of first order involves only
first-order derivatives. It can be written in the form

d
Eu(t) = F(u(t),1t)

and directly defines the actual rate of change in the
variables.

@ A second-order differential equation involves first
and second-order derivatives and can be written in
the form

aut) = F (u(0) Gulohe).
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Radioactive Decay Chain

d

EUI(t) = —)\1 u1(t)
d
d—U2(t) = M\ ul(t) — X2 U2(t)
t
d
d_un—l(t) = Ap—2 Un—2(t) — An—1 Un—l(t)
t
d

au,,(t) e )\n_lun_l(t)
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Systems of Ordinary Differential Equations

Multiple unknown functions uy(t), ux(t), ..., un(t)

_l’_

Equations that involve derivatives of these functions

| A,

Order of a System of Differential Equations
Order of a system of differential equations

Order of the highest derivative that occurs




Examples of Systems of Ordinary Differential Equations %

Chemical Reaction

AWM = ki At) B(1) + ko C(1)
%B(t) = —ki A(t) B(t) + ko C(t)

€)= kA B(t) — ko C(2)
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Examples of Systems of Ordinary Differential Equations %

%S(t) = —BS(t)I(t)
%l(t) = BS(t)I(t) —vI(2)
%R(t) = 7I(¢)
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Examples of Systems of Ordinary Differential Equations aj

Predator-Prey Model

PO = A(l ()) P(t) - s P(1) Q(t)
g0 = u(*H 1) e
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Examples of Systems of Ordinary Differential Equations

Particle in a Gravity Field

Gm
Pu(t) = _Wu(t)
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Ordinary Differential Equations

Differential Equations of Second Order

General form:
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d d

e u(t) = F (u(t),au(t),t)

Introduce an additional variable v(t) = %u(t).
Eu(t) = v(t)

F(u(t), v(t),t)
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Solving Ordinary Differential Equations

Initial Conditions

Each variable in a first-order system requires a
given initial value at a time tp.

Analytical Solution of Differential Equations

Although this topic fills books and classes for
engineers, only a small number of differential
equations can be solved analytically.

\Z

Numerical approximation required in most
cases.

15/29



Numerics of Ordinary Differential Equations

The Finite-Difference Method

@ An approximate solution is computed only at given
times t1, t, t3, ..., starting from the given initial
state u(tp).

@ Computing the solution at the time t,;1 using the
known solution at the time t, is called a (forward)
time step.

@ In many cases, equidistant time steps of the same
length t are used, so that t; = tg + dt,
th = t1 + O0t, t3 = to + Ot, ...

@ Derivative %u(t) is approximated by a difference
quotient.
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Numerics of Ordinary Differential Equations

Right-Hand Difference Quotient
d _u(t+4dt) — u(t)
dr” ) = 5t

Left-Hand Difference Quotient
d _u(t) — u(t - dt)
Eu(t) = St

l|

Central Difference Quotients
u(t+ot) — u(t —ot)

d
Eu(t) = 26t

or

d sty . u(t+dt) —u(t)
dtu(lur 2) ® ot
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Numerics of Ordinary Differential Equations

The Explicit Euler Scheme

Differential equation
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d
Zu(t) = F(u(e). 1)

Insert a right-hand difference quotient.

-

u(t+0t) ~ u(t)+dtF(u(t) t)
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Numerics of Ordinary Differential Equations

The Fully Implicit Euler Scheme

Differential equation

d
Zu(t) = F(u(e). 1)

Insert a left-hand difference quotient.

U(t+52—“(t) ~ F(u(t + 8t), t + ot)
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u(t+0t) ~ u(t)+ ot F(u(t+dt), t+dt)
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Numerics of Ordinary Differential Equations

Examples of Explicit and Implicit Discretization

Radioactive decay:
Explicit:

u(t +6t) ~ u(t)+6t(=Au(t))
Fully implicit:
u(t+0t) ~ u(t)+dt(—Au(t+dt))
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u(t+0t) ~
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Numerics of Ordinary Differential Equations

UN
FRE

Examples of Explicit and Implicit Discretization

Logistic growth:
Explicit:

u(t+0t) ~ u(t)+dtA (1 - “Tt)) u(t)
Fully implicit:

u(t+dt) ~ u(t)+dotA (1 - @) u(t + ot)

\Z

u(t +6t) + u(t + dt) + =0
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Mixed Schemes

Mixture of t and t + Jt in the rate of change F(u(t), t))

Example: logistic growth

u(t+0t) = u(t)+5t)\(1—@) u(t+dt)

or

c

u(t+dt) =~ u(t)+5t)\(1—M) u(t)
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Numerics of Ordinary Differential Equations

The Crank-Nicholson Scheme

Specific mixture of explicit and fully implicit Euler scheme:

u(t+ot) — u(t) - F(u(t), t)+ F(u(t+0t), t + dt)

ot 2
\Z
ot

u(t—l—&t)—%F(u(t-l—ét),t-l—ét) = u(t)-l-?F(u(t),t)
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Numerics of Ordinary Differential Equations

Advantages of the Different Schemes

Explicit: simple
Fully implicit: often stable for large §t

Crank-Nicholson: high accuracy for 6t — 0;
convergence of second order, i.e., error
o 0t? instead of 6t

24 /29



Numerics of Ordinary Differential Equations

Explicit Schemes of Higher Order

An error o< 0t" with n > 1 can also be achieved by
appropriate explicit schemes, e.g., by the 4t" order
Runge-Kutta scheme

with

u(t+4dt) ~ u(t)+ ot

ki + 2ko + 2k3 + kq
6

u(t),t) (like explicit Euler scheme)
+ Skt + %)
+ Gkt + %)
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Analytical Considerations

Motivation

Although many differential equations cannot
be solved analytically, several properties of the
solution can often be obtained without
numerical simulations.

Fixed Points

| A

A fixed point is a solution which remains
constant through time. The fixed points of a
(system of) differential equation(s) are
computed by solving

d
—u(t) = F(u() = 0.
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Analytical Considerations

Stability of Fixed Points

A fixed point ur is stable if the system
approaches the fixed point if it is close to it.
Stable fixed points are also called attractors.

For a single differential equation of first order:
ur is stable if

Flu) > 0 for U < ur
F(u) < 0 u > ur
Alternative criterion:
d
EF(U)]u_uf <0
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Analytical Considerations

Stability of the Fully Implicit Euler Scheme

A time step of the fully implicity Euler scheme
cannot cross a stable fixed point.
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Analytical Considerations

Nondimensional Variables

Idea: If the differential equation has a characteristic
time t. and /or a characteristic value u. of the
solution u(t), introduce nondimensional variables

A t
P = —
te
sy u(t)
u(t) = m
d...  td
e = o= Fult)

Advantage: Each of the transforms reduces the number
of model parameters by one.
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