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Examples of Time-Dependent Models

Examples From My Own Research

Val Pola rock avalanche

Snow avalanche hitting a pond

Fluvial and glacial landform evolution

Examples Considered in This Class

Hubbert’s model of oil production

Predator-prey population dynamics

Fluvial erosion

Oscillations of a lamp during an earthquake

Planetary motion and meteorite impact

Flow of ice
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http://hergarten.at/extra/valpola.mp4
http://hergarten.at/extra/pond.mp4
http://hergarten.at/openlem/firstexample/glaciers.mp4
http://hergarten.at/extra/pendulums.gif


Examples of Time-Dependent Models

Radioactive Decay

d

dt
u(t) = − λ u(t)

where

t = time

u(t) = amount at time t

λ = parameter
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Examples of Time-Dependent Models

Unlimited Growth

d

dt
u(t) = λ u(t)

Simplest model of population
dynamics, where

u(t) = population at time t
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Examples of Time-Dependent Models

Logistic Growth

d

dt
u(t) = λ u(t)− µ u(t)2

where

λ,µ = parameters
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Ordinary Differential Equations

Structure of the Previous Problems

Unknown function u(t)

+

Equation that defines the rate of change
d
dt u(t) (= u′(t) = u̇(t))

Definition: Ordinary Differential Equation

An ordinary differential equation is an equation
that involves the derivative(s) of an unknown
function (and in many cases also the function
itself).
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Ordinary Differential Equations

Differential Equations of First and Second Order

A differential equation of first order involves only
first-order derivatives. It can be written in the form

d

dt
u(t) = F (u(t), t)

and directly defines the actual rate of change in the
variables.

A second-order differential equation involves first
and second-order derivatives and can be written in
the form

d2

dt2
u(t) = F

(
u(t),

d

dt
u(t), t

)
.
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Examples of Time-Dependent Models

Radioactive Decay Chain

d

dt
u1(t) = −λ1 u1(t)

d

dt
u2(t) = λ1 u1(t)− λ2 u2(t)

...

d

dt
un−1(t) = λn−2 un−2(t)− λn−1 un−1(t)

d

dt
un(t) = λn−1 un−1(t)
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Ordinary Differential Equations

Systems of Ordinary Differential Equations

Multiple unknown functions u1(t), u2(t), . . . , un(t)

+

Equations that involve derivatives of these functions

Order of a System of Differential Equations

Order of a system of differential equations

=

Order of the highest derivative that occurs
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Examples of Systems of Ordinary Differential Equations

Chemical Reaction

d

dt
A(t) = −k1 A(t)B(t) + k2 C (t)

d

dt
B(t) = −k1 A(t)B(t) + k2 C (t)

d

dt
C (t) = k1 A(t)B(t)− k2 C (t)
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Examples of Systems of Ordinary Differential Equations

SIR Model

d

dt
S(t) = −β S(t) I (t)

d

dt
I (t) = β S(t) I (t)− γ I (t)

d

dt
R(t) = γ I (t)
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Examples of Systems of Ordinary Differential Equations

Predator-Prey Model

d

dt
P(t) = λ

(
1− P(t)

c

)
P(t)− s P(t)Q(t)

d

dt
Q(t) = µ

(
s P(t)

n
− 1

)
Q(t)
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Examples of Systems of Ordinary Differential Equations

Particle in a Gravity Field

d2

dt2
~u(t) = − Gm

|~u(t)|3
~u(t)
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Ordinary Differential Equations

Differential Equations of Second Order

General form:

d2

dt2
u(t) = F

(
u(t),

d

dt
u(t), t

)
Introduce an additional variable v(t) = d

dt u(t).

d

dt
u(t) = v(t)

d

dt
v(t) = F (u(t), v(t), t)
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Solving Ordinary Differential Equations

Initial Conditions

Each variable in a first-order system requires a
given initial value at a time t0.

Analytical Solution of Differential Equations

Although this topic fills books and classes for
engineers, only a small number of differential
equations can be solved analytically.

Numerical approximation required in most
cases.
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Numerics of Ordinary Differential Equations

The Finite-Difference Method

An approximate solution is computed only at given
times t1, t2, t3, . . . , starting from the given initial
state u(t0).

Computing the solution at the time tn+1 using the
known solution at the time tn is called a (forward)
time step.

In many cases, equidistant time steps of the same
length δt are used, so that t1 = t0 + δt,
t2 = t1 + δt, t3 = t2 + δt, . . .

Derivative d
dt u(t) is approximated by a difference

quotient.
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Numerics of Ordinary Differential Equations

Right-Hand Difference Quotient

d

dt
u(t) ≈ u(t + δt)− u(t)

δt

Left-Hand Difference Quotient

d

dt
u(t) ≈ u(t)− u(t − δt)

δt

Central Difference Quotients

d

dt
u(t) ≈ u(t + δt)− u(t − δt)

2δt
or

d

dt
u(t + δt

2 ) ≈ u(t + δt)− u(t)

δt
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Numerics of Ordinary Differential Equations

The Explicit Euler Scheme

Differential equation

d

dt
u(t) = F (u(t), t)

Insert a right-hand difference quotient.

u(t + δt)− u(t)

δt
≈ F (u(t), t),

u(t + δt) ≈ u(t) + δt F (u(t), t)
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Numerics of Ordinary Differential Equations

The Fully Implicit Euler Scheme

Differential equation

d

dt
u(t) = F (u(t), t)

Insert a left-hand difference quotient.

u(t + δt)− u(t)

δt
≈ F (u(t + δt), t + δt)

u(t + δt) ≈ u(t) + δt F (u(t + δt), t + δt)
19 / 29



Numerics of Ordinary Differential Equations

Examples of Explicit and Implicit Discretization

Radioactive decay:
Explicit:

u(t + δt) ≈ u(t) + δt (−λ u(t))

Fully implicit:

u(t + δt) ≈ u(t) + δt (−λ u(t + δt))

u(t + δt) ≈ u(t)

1 + δt λ
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Numerics of Ordinary Differential Equations

Examples of Explicit and Implicit Discretization

Logistic growth:
Explicit:

u(t + δt) ≈ u(t) + δt λ

(
1− u(t)

c

)
u(t)

Fully implicit:

u(t + δt) ≈ u(t) + δt λ

(
1− u(t + δt)

c

)
u(t + δt)

u(t + δt)2 + u(t + δt) + = 0
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Numerics of Ordinary Differential Equations

Mixed Schemes

Mixture of t and t + δt in the rate of change F (u(t), t))

Example: logistic growth

u(t + δt) ≈ u(t) + δt λ

(
1− u(t)

c

)
u(t + δt)

or

u(t + δt) ≈ u(t) + δt λ

(
1− u(t + δt)

c

)
u(t)
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Numerics of Ordinary Differential Equations

The Crank-Nicholson Scheme

Specific mixture of explicit and fully implicit Euler scheme:

u(t + δt)− u(t)

δt
≈ F (u(t), t) + F (u(t + δt), t + δt)

2

u(t + δt)− δt

2
F (u(t + δt), t + δt) ≈ u(t) +

δt

2
F (u(t), t)
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Numerics of Ordinary Differential Equations

Advantages of the Different Schemes

Explicit: simple

Fully implicit: often stable for large δt

Crank-Nicholson: high accuracy for δt → 0;
convergence of second order, i. e., error
∝ δt2 instead of δt
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Numerics of Ordinary Differential Equations

Explicit Schemes of Higher Order

An error ∝ δtn with n > 1 can also be achieved by
appropriate explicit schemes, e. g., by the 4th order
Runge-Kutta scheme

u(t + δt) ≈ u(t) + δt
k1 + 2k2 + 2k3 + k4

6

with

k1 = F (u(t), t) (like explicit Euler scheme)

k2 = F (u(t) + δt
2 k1, t + δt

2 )

k3 = F (u(t) + δt
2 k2, t + δt

2 )

k4 = F (u(t) + δt k3, t + δt)
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Analytical Considerations

Motivation

Although many differential equations cannot
be solved analytically, several properties of the
solution can often be obtained without
numerical simulations.

Fixed Points

A fixed point is a solution which remains
constant through time. The fixed points of a
(system of) differential equation(s) are
computed by solving

d

dt
u(t) = F (u(t)) = 0.
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Analytical Considerations

Stability of Fixed Points

A fixed point uf is stable if the system
approaches the fixed point if it is close to it.
Stable fixed points are also called attractors.

For a single differential equation of first order:
uf is stable if

F (u) > 0
F (u) < 0

for
u < uf
u > uf

Alternative criterion:

d

du
F (u)|u=uf < 0
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Analytical Considerations

Stability of the Fully Implicit Euler Scheme

A time step of the fully implicity Euler scheme
cannot cross a stable fixed point.
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Analytical Considerations

Nondimensional Variables

Idea: If the differential equation has a characteristic
time tc and / or a characteristic value uc of the
solution u(t), introduce nondimensional variables

t̂ =
t

tc

û(t̂) =
u(t)

uc

d

dt̂
û(t̂) =

tc
uc

d

dt
u(t)

Advantage: Each of the transforms reduces the number
of model parameters by one.
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