Partial Differential Equations

Stefan Hergarten

Institut für Geo- und Umweltnaturwissenschaften Albert-Ludwigs-Universität Freiburg

The Seven Golden Rules of Numerical Modeling

. . .

. . .

Golden Rule 3. Numerical modelling consists of solving partial differential equations (PDEs). There are only a few equations to learn. They are generally not complicated, but it is essential to learn and understand them gradually and properly.

Functions of More Than One Coordinate

Almost all processes relevant in geosciences are described by variables varying in time and space. The spatial component is a scalar in case of a one-dimensional description and a vector in case of a two- or three-dimensional description.

Examples:

- \bullet $\overline{T}(\vec{x},t)$ as the temperature
- $\rho(\vec{x},t)$ as the density in a gas
- $p(\vec{x}, t)$ as the fluid pressure in a reservoir
- $\vec{v}(\vec{x},t)$ as the flow velocity in a fluid
- \bullet $P(\vec{x}, t)$ and $Q(\vec{x}, t)$ as the population densities of prey and predators

Spatial Interactions

Spatial interactions often refer to the spatial variation in the variables.

- Heat conduction is driven by spatial differences in temperature; in direction of temperature.
- Fluid flow is driven by spatial differences in pressure: acceleration in direction of pressure.
- Prey may preferably move in direction of

prey population and

predator population.

• Predators may preferably move in direction of prey population and

predator population.

Partial Derivatives

- \bullet If a function μ depends on more than one coordinate, e. g., $u(x_1, x_2, x_3, t)$ (= $u(\vec{x}, t)$), the derivative with respect to one of the coordinates (while the others are constant) is called partial derivative.
- \bullet Partial derivatives are written with the symbol ∂ , e.g.,

$$
\frac{\partial}{\partial x_1}u(\vec{x},t), \frac{\partial}{\partial x_2}u(\vec{x},t), \frac{\partial}{\partial x_3}u(\vec{x},t), \text{ and } \frac{\partial}{\partial t}u(\vec{x},t).
$$

Examples of Partial Derivatives

1D harmonic wave

$$
A = amplitude
$$

\n
$$
u(x, t) = A \sin(\omega t - kx)
$$
 with $\omega =$ angular frequency
\n
$$
k =
$$
 wave number
\n
$$
\frac{\partial}{\partial x}u(x, t) =
$$

\n
$$
\frac{\partial}{\partial t}u(x, t) =
$$

Examples of Partial Derivatives

Density of an ideal gas

$$
\rho(p, T) = \frac{M}{R} \frac{p}{T} \quad \text{with} \quad M = \text{molar mass}
$$
\n
$$
\frac{\partial}{\partial p} \rho(p, T) = \frac{\partial}{\partial T} \rho(p, T) = \frac{\partial}{\partial T}
$$

The Gradient

The partial derivatives with respect to the spatial coordinates are often subsumed in a vector

grad
$$
(u(\vec{x}, t))
$$
 = $\nabla u(\vec{x}, t) = \begin{pmatrix} \frac{\partial}{\partial x_1} u(\vec{x}, t) \\ \frac{\partial}{\partial x_2} u(\vec{x}, t) \\ \frac{\partial}{\partial x_3} u(\vec{x}, t) \end{pmatrix}$

Examples:

$$
H(x_1, x_2) = x_1^2 - x_2^2, \quad \nabla H(x_1, x_2) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}
$$

$$
H(x_1, x_2) = x_1 x_2, \quad \nabla H(x_1, x_2) = \begin{pmatrix} 1 \\ 1 \end{pmatrix}
$$

Properties of the Gradient

- $\nabla u(\vec{x})$ is to the lines (in 2D) or the surfaces (in 3D) where $u(\vec{x})$ is constant.
- \bullet $\nabla u(\vec{x})$ points in direction of

in $u(\vec{x})$.

• The length of $\nabla u(\vec{x})$ is the slope of $u(\vec{x})$ in direction of .

What Is a Partial Differential Equation?

- Ordinary differential equation (ODE): equation for an unknown function only one variable involving derivatives
- Partial differential equation (PDE): equation for an unknown function depending on more than one coordinate involving partial derivatives
- Several definitions are the same for ODEs and PDEs:
	- Order
	- Systems of differential equations
	- Initial conditions
	- Fixed points

Geologists in Numerical Modeling

. . . popular 'myths' among geologists, who often declare (or think) something like:

Numerical modelling is very complicated; it is too difficult for people with a traditional geological background and should be performed by mathematicians.

I used to think like that before I started. I always remember my feeling when I heard for the first time the expression, 'Navier–Stokes equation'. 'Ok, forget it! This is hopeless,' I thought at that time, and that was wrong.

The Navier-Stokes Equations of a Viscous Fluid

$$
\rho \left(\frac{\partial}{\partial t} \vec{v} + v_1 \frac{\partial}{\partial x_1} \vec{v} + v_2 \frac{\partial}{\partial x_2} \vec{v} + v_3 \frac{\partial}{\partial x_3} \vec{v} \right)
$$

= $\rho \vec{g} - \nabla p + \eta \left(\frac{\partial^2}{\partial x_1^2} \vec{v} + \frac{\partial^2}{\partial x_2^2} \vec{v} + \frac{\partial^2}{\partial x_3^2} \vec{v} \right)$

where

$$
\vec{v}(\vec{x}, t) = \text{velocity} \n p(\vec{x}, t) = \text{pressure}
$$

The 1D Advection Equation

$$
\frac{\partial}{\partial t}u(x,t) = -v \frac{\partial}{\partial x}u(x,t)
$$

General solution with the initial condition

$$
u(x,0) = u_0(x)
$$

where $u_0(x)$ is a given function:

$$
u(x, t) = u_0(x - vt)
$$

Numerics of Partial Differential Equations

Treatment of the Time Coordinate

The procedure is basically the same as for the time in ordinary differential equations:

- If second-order derivatives occur, the first-order derivatives must be introduced as separate variables.
- Approximate solutions are computed step by step (in steps of length δt), starting from the initial time t_0 .
- The time derivative is approximated by

$$
\frac{\partial}{\partial t}u(\vec{x},t) \approx \frac{u(\vec{x},t+\delta t)-u(\vec{x},t)}{\delta t}.
$$

• All schemes (explicit and fully implicit Euler, mixed, e. g., Crank-Nicholson) can be used.

Numerics of Partial Differential Equations

The Finite-Difference Method in One Dimension

One-dimensional case: only one spatial coordinate x (and time)

First step:

- Discrete points x_1, x_2, \ldots, x_n are defined on the considered part of the x-axis (from the left-hand boundary to the right-hand boundary).
- These points are called nodes and are the points where an approximate solution will be computed.
- The nodes may be equidistant (having all the same distance δx), but spacing may also be non-uniform.

The Finite-Difference Method in One Dimension

Second step: The partial derivatives $\frac{\partial}{\partial x} u(x,t)$ are approximated by difference quotients.

Right-handed difference quotient:

$$
\frac{\partial}{\partial x}u(x,t) \approx \frac{u(x+\delta x,t)-u(x,t)}{\delta x}
$$

Left-handed difference quotient:

$$
\frac{\partial}{\partial x} u(x, t) \approx \frac{u(x, t) - u(x - \delta x, t)}{\delta x}
$$

Numerics of Partial Differential Equations

The Finite-Difference Method in One Dimension

Central (symmetric) difference quotients:

$$
\frac{\partial}{\partial x}u(x, t) \approx \frac{u(x + \delta x, t) - u(x - \delta x, t)}{2\delta x}
$$

$$
\frac{\partial}{\partial x}u(x, t) \approx \frac{u(x + \frac{\delta x}{2}, t) - u(x - \frac{\delta x}{2}, t)}{\delta x}
$$

$$
\frac{\partial}{\partial x}u(x + \frac{\delta x}{2}, t) \approx \frac{u(x + \delta x, t) - u(x, t)}{\delta x}
$$

$$
\frac{\partial}{\partial x}u(x - \frac{\delta x}{2}, t) \approx \frac{u(x, t) - u(x - \delta x, t)}{\delta x}
$$

Only the first version can be applied directly, the others are only useful for combining them to second-order derivatives.

The Finite-Difference Method in One Dimension

- The accuracy of all these difference quotients decreases with increasing δx .
- As long as there is no preferred direction, right-hand and left-hand difference quotients are equivalent.
- Central difference quotients provide a higher accuracy than the one sided versions.

Balance Equations

General Concept

Rate of change of the amount contained in a given volume

Amount per time entering at the boundaries

=

- Amount per time leaving at the boundaries

 $^{+}$

Amount per time produced within the volume

- Amount per time consumed within the volume

Density and Flux Density

Density $u(\vec{x},t) =$ amount per volume Flux density $\vec{q}(\vec{x},t) =$ amount passing a surface per time and surface area

> \vec{q} is a vector, so that the amount per time passing a (small) surface of size A with a unit normal vector \vec{n} is $\vec{q} \cdot \vec{n}A$.

Balance Equations

The Equation of Continuity

The Equation of Continuity

$$
\frac{\partial}{\partial t}u(\vec{x},t) = -\operatorname{div}(\vec{q}(\vec{x},t)) + Q(\vec{x},t)
$$

where

$$
\begin{array}{rcl}\n\text{div}\left(\vec{q}(\vec{x},t)\right) & = & \frac{\partial}{\partial x_1}q_1(\vec{x},t) + \frac{\partial}{\partial x_2}q_2(\vec{x},t) + \frac{\partial}{\partial x_3}q_3(\vec{x},t) \\
& = & \text{divergence of the flux density } \vec{q}\n\end{array}
$$

Advection

Assume that the considered amount moves at a given velocity $\vec{v}(\vec{x},t)$: $\vec{q}(\vec{x},t) = u(\vec{x},t) \vec{v}(\vec{x},t)$ ∂ $\frac{\partial}{\partial t} u(\vec{x},t) = - \text{div} (u(\vec{x},t) \vec{v}(\vec{x},t)) + Q(\vec{x},t)$ $\ln 1$ D[.] ∂ ∂

$$
\frac{\partial}{\partial t}u(x,t) = -\frac{\partial}{\partial x}(u(x,t)v(x,t)) + Q(x,t)
$$

The equation of advection is of first order in both time and space (hyperbolic differential equation).

Advection

Simplest version of the equation of advection: $\vec{v}(\vec{x},t) = \text{const.}, Q(\vec{x},t) = 0:$

$$
\frac{\partial}{\partial t}u(\vec{x},t) = -\vec{v}\cdot\nabla u(\vec{x},t)
$$

 $In 1D:$

$$
\frac{\partial}{\partial t}u(x,t) = -v\frac{\partial}{\partial x}u(x,t)
$$

Diffusion

- Flux follows the direction of steepest descent of the density $u(\vec{x},t)$.
- Flux density is proportional to the decrease of density per length.

$$
\vec{q}(\vec{x},t) = -D \nabla u(\vec{x},t) = -D \begin{pmatrix} \frac{\partial}{\partial x_1} u(\vec{x},t) \\ \frac{\partial}{\partial x_2} u(\vec{x},t) \\ \frac{\partial}{\partial x_3} u(\vec{x},t) \end{pmatrix}
$$

where

 $D =$ diffusivity (coefficient of diffusion)

Diffusion

Insert the flux density into the equation of continuity:

$$
\frac{\partial}{\partial t}u(\vec{x},t) = -\text{div}(\vec{q}(\vec{x},t)) + Q(\vec{x},t) \n= \text{div}(D\nabla u(\vec{x},t)) + Q(\vec{x},t)
$$

In 1D:

$$
\frac{\partial}{\partial t}u(x,t) = \frac{\partial}{\partial x}\left(D\frac{\partial}{\partial x}u(x,t)\right) + Q(x,t)
$$

The diffusion equation is of first order in time and of second order in space (parabolic differential equation).

Diffusion

Simplest version: $D = \text{const.}$, $Q(\vec{x}, t) = 0$:

$$
\frac{\partial}{\partial t}u(\vec{x},t) = D \operatorname{div} (\nabla u(\vec{x},t))
$$
\n
$$
= D \left(\frac{\partial^2}{\partial x_1^2} u(\vec{x},t) + \frac{\partial^2}{\partial x_2^2} u(\vec{x},t) + \frac{\partial^2}{\partial x_3^2} u(\vec{x},t) \right)
$$
\n
$$
= D \Delta u(\vec{x},t)
$$
\nwhere $\Delta = \frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \frac{\partial^2}{\partial x_3^2}$ is the Laplace operator.

In 1D:

$$
\frac{\partial}{\partial t}u(x,t) = D\frac{\partial^2}{\partial x^2}u(x,t)
$$

Initial Conditions and Boundary Conditions

- Time is distinct from the spatial coordinates as it is directed.
- For a unique solution, partial differential equations require

Initial conditions: The solution for all points \vec{x} of the domain at a time t_0 must be given.

Boundary conditions: The solution (or, e. g., its derivatives) must be given at (least at a part of) the boundary of the domain for all times $t > t_0$.