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Earth's Surface Heat Flux

Regional Variation of the Surface Heat Flux Density
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Source: Davies & Davies, Earth’s surface heat flux, Solid Earth, 2010
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Earth's Surface Heat Flux

Definition of Heat Flux Density

G = energy per time and cross section area [Y%]

Earth’s Mean Surface Heat Flux Density

| 3
A

Continental crust (40 % of total surface): g = 70.9 n;]j_w
Oceanic crust (60 % of total surface): qg=1054 ”r’n—vzv
Overall mean: g=91.6 "rL—VZV

|<

@ g is much smaller than the solar constant S =

N

m
@ g describes the long-term mean energy balance ot the solid
Earth.

@ g reflects the ongoing cooling of Earth and from radiogenic
heat production in the upper continental crust.
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The Temperature in Earth's Crust

A Typical Continental Geotherm
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Fundamentals — Heat Transport

Fourier's Law of Heat Conduction (1822)

© Heat flow follows the direction of steepest descent of the
temperature field T(X,t) = T(x,y, z, t).

@ Heat flow is proportional to the decrease of temperature per

length:
9 T(x,y,zt)
G 1) = —AVT(Xt) = —A 5T(x yv.z,t) | (1)
I T(xy.z1
with
G(%,t) = heat flux density (energy per area and time) [%V;]

A = thermal conductivity [ ]
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Fundamentals — Heat Transport

The Thermal Conductivity

Typical Values:

Material A Rocks A
diamond 2300 granite 2.8
iron 80 basalt 2
sand 0.6 dolomite 25
polyethylene (PE) 0.48 limestone 2.5
expanded polystyrene (EPS) | 0.033 sandstone 2.5
water 0.6 clay 1.4

air 0.026 widely used value
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Fundamentals — Heat Transport

The Equation of Continuity (Energy Balance)

Energy balance of a cube without heat production:

AZ V4

d

N,
>

d X d X
Change in thermal energy E contained in the cube:

OE

E = qxd2 - qxd2 =+ qyd2 - qyd2 + qzd2 - qzd2 (2)




Fundamentals — Heat Transport

The Equation of Continuity (Energy Balance)

Change in energy density e (thermal energy per volume):

0E
e _ o
ot d3
_ Gx —Qqx qy — Ay 4z — qz
B d + d + d
dqx 9qy, 0q:
—_— = — for d
— O By 7 or —0
— —div(q)
with the divergence operator
o dg9x , 0q,  0q.
W@ = Bty T e
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Fundamentals — Heat Transport

The Heat Capacity

Volumetric heat capacity

Col = 8_7- (5)

describes the change in thermal energy density e [ ] with T.
Unit:
Specific heat capacity

Col 1 Oe
p  pdT (©)

CcC —=

is measured per mass instead of per volume (p = density).
Unit:
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Fundamentals — Heat Transport

The Heat Capacity

Molar heat capacity

M Oe

mo:M:__ 7
Gl c=ar (7)

is measured per mol instead of per kg (M = molar mass).
Unit:
Dulong-Petit law:

Cmol ~ 3R (8)

with the gas constant R = 8.314 ﬁ for most crystalline solids.

.
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Fundamentals — Heat Transport

The Heat Capacity

Typical values at standard conditions:

Material c [ﬁ] Rocks c [kg%]

diamond 509 granite 1000

iron 450 basalt 850

sand 550 dolomite 1000

polyethylene (PE) 1250 limestone 900

expanded polystyrene (EPS) | 1500 sandstone 900
water 4187 clay 1100

air 1005 widely used value
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Fundamentals — Heat Transport
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The Heat Conduction Equation (Energy Balance + Fourier's Law)

General version:
oT Oe

0 oT 0 oT 0 oT
= &(A@*a—y@w)*@(%) ©)

Simplified version for constant A:

oT (82T ?T 0°T

Pt Ox? i dy? * 822> = AAT (10)

with the Laplace operator
0? 0? 0?

A = = 4+ 2 49 _
8x2+8y2 0z2

V. 12 /41




Fundamentals — Heat Transport

The Thermal Diffusivity

The heat conduction equation for constant A can be written in
the form

aT 82T+82T+82T
ar  "\ox2 Tayz T 922

) = kAT (12)

with the thermal diffusivity

Water: k= 1.4 x 10~7 ™2

S
Rocks: k ~ 1070 mT2 ~ 30 m?z
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Fundamentals — Heat Transport

Thermal Conductivity ()

v, W
Unlt. mK

Meaning: Describes how well a material conducts heat.

Heat Capacity (¢, ¢uol, Cmol)
o J J
Unit: @k: 73Kk molK
Meaning: Describes how much energy is needed to heat up a
material.

Thermal Diffusivity (k)

. 2
Unit; ™

S

Meaning: Describes how rapidly temperature propagates.
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The Temperature in Earth's Crust

One-Dimensional Description

Most of the large-scale heat conduction problems in the lithosphere can be
approximated in 1D.

T(x,y,z, t) does not depend on x and y

\Z

peiT(zt) = —azt) (13)
q(z,t) = —)\%T(z,t) (14)

The z axis is often assumed to point in downward direction.
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The Temperature in Earth's Crust

One-Dimensional Steady-State Geotherms

pc%T(z, t) = —%q(z, t)y =0 (15)
q(z) = —)\%T(z) = —qs = const (16)

with gs = —q(0) = surface heat flux density

\l/ q

T(z) = Ts+ XZ (17)

if \ is constant with Tg = T(0) = surface temperature

4
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The Temperature in Earth's Crust

FRE

Why are Geotherms Curved?

@ Variation in A with depth
@ Advective heat transport

o Non-steady state, crust is still cooling

@ Radiogenic heat production
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The Temperature in Earth's Crust

Radiogenic Heat Production

@ Main contributions: decay of uranium 238U, 235U,
thorium 232Th, and potassium “°K.

@ Strong variation; typical heat production rates:
granite: S~ 2.5 wy
m

basalt: S~ 0.1 %
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The Temperature in the Continental Crust

Correlation of Surface Heat Flux and Heat Production

100

T T T

o, MW m-2
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6 8
pHo, pW m-3

Source: Turcotte & Schubert, Geodynamics
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Fundamentals — Heat Transport
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The Heat Conduction Equation with Heat Production

3D version:

pc%T(%,t) = —div(§(x, t))+ S(X,t) (18)

1D version:

pc%T(z,t) _ —%q(z,t)—i—S(z,t) (19)

<
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One-Dimensional Steady-State Geotherms

Steady-State Heat Conduction with Heat Production

L 4z) = S(2) (20)

a(z)— a(0) = | S(&)de (21)

-

d
Ge—as = —q(0)— (~q(d)) = /O S de (22)

where d = thickness of the lithosphere

g = —q(d) = basal heat flux density
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One-Dimensional Steady-State Geotherms cH

Relationship Between Heat Flux Density and Heat Production

From the diagram:

@ Variations in surface heat flux density mainly arise from
variations in radiogenic heat production.

@ Straight line
gs = gp+ hSs (23)
where S; = heat production rate at the surface.
Typical values:

gp ~ 287 (24)

h = 2% ~ 10km (25)
Ss

1%
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One-Dimensional Steady-State Geotherms
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How is Heat Production Distributed in the Crust?

Two simple models:

Model 1: constant heat production down to a given
depth h

Ss forz<h
5(2) = { 0 else (26)

\Z

az) = a0+ /0 “s(6)de

_ _{ 95— (as — ) forz<h 0
gs else

v
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One-Dimensional Steady-State Geotherms

How is Heat Production Distributed in the Crust?

Model 2: exponentially decreasing heat production rate
S(z) = S,eh (28)

@ Both models cannot be distinguished from the
surface data.

@ Model 2 is consistent with surface erosion.
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Fundamentals — Solutions for Heat Conduction

Analytical Solutions

A wealth of analytical solutions has been developed
during the last centuries (see, e.g., Carslaw & Jaeger,
Conduction of Heat in Solids).

@ Restricted to specific situations

@ In principle sufficient for all problems considered in
this class.

| \

Numerical Approximations

Most widely used techniques:
e Finite differences

@ Finite elements

N
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Fundamentals — Solutions for Heat Conduction

Separation of Variables

Look for solutions of the heat conduction equation

0, o
ET(X, t) = KAT(X t) (29)

that can be written as a product

T(x,t) = f(X)&(t) (30)

%g(t) = Ag(t) and Af(X) = %f()?’) (31)

with a constant A.
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Fundamentals — Solutions for Heat Conduction
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Separation of Variables

Solution for g(t) with g(0) = 1:
g(t) = (32)

A > 0: Temperature increases exponentially
(practically impossible).

N\ < 0: Temperature decreases exponentially.

Most general solution: complex number A;

combination of increase / decrease and
harmonic oscillation
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Seasonal Variation of the Subsurface Temperature

Harmonic Solution

Assume a harmonic oscillation of the surface temperature (z = 0):

T(0,t) = cos(wt)
with

27“ = angular frequency
T = period (e.g., 1 year)

Separation approach with A = jw:

T(z,t) = f(2) elwt

(33)

(34)

(35)
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Seasonal Variation of the Subsurface Temperature

Harmonic Solution

Solution with f(0) = 1:

flz) = VN7 = EOHIVEZ  (36)

T(Z, t) _ eiwtezl:(l-i-i)\/gz
ei(wt:l: iz) e:l:\/gz (37)

Only the version with the minus sign is
physically reasonable.
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Seasonal Variation of the Subsurface Temperature

d = & = ¥ (38)

defines the depth of penetration:
T(z,t) = e(wt=8)e3 (39)

Solution with cosine instead of the complex
exponential function:

T(z,t) = cos <wt - 2) e d (40)

4
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Seasonal Variation of the Subsurface Temperature

Harmonic Solution
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Seasonal Variation of the Subsurface Temperature

Harmonic Solution

Amplitude: e=@ = d is the depth where the

temperature oscillation has decreased to of the
oscillation at the surface.

Phase shift: Oscillation is opposite to the oscillation at
the surface for z = nd.

The Diel Variation

Same equations as for the seasonal variation, but the
depth of penetration d is almost times lower.
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Fundamentals — Linear Differential Equations
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Superposition of Solutions

The heat conduction equation

T(X, t) = div(AVT(X,t)) + S(X, t) (41)

\Z

Solutions can be superposed.

81’

is linear.
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Fundamentals — Linear Differential Equations

Superposition of Solutions

e T(X,t) is a solution for S(X, t)

\Z

aT(X,t) is a solution for

e If T1(X, t) is a solution for S1(X, t)
and T»(X, t) is a solution for Sy(X, t)

\Z

T1(X, t) + T2(X, t) is a solution for
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Seasonal Variation of the Subsurface Temperature

Typical Application

Assume that

@ Tp(X) is a solution of the steady-state equation with heat production
div(AVT,(X))+S5(X) = 0 (42)

e T:(X, t) is a solution of the time-dependent equation without heat production

pc% Ti(X, t) = div(AVT(X, 1)) (43)
T (X, t) = Tm(X) + T(X, t) is a solution of the full equation

T(z1t) = div(AVT(% 1)+ S(%) (44)

81’
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Seasonal Variation of the Subsurface Temperature

Superposition of Seasonal and Diel Oscillation

with

Tm(z)
Ty(z,t)

Td(z, t)
ayy ad
O.)y, wd

tyv td
dy. dd

T(z,t) = Tm(z)+ Ty(z,t)+ Ty(z,t) (45)

steady-state geotherm

a, cos (wy(t —t) — d%) e % = seasonal variation (46)
a4 cos (wd(t —tg) — did) e 9 = diel variation (47)
amplitudes

angular frequencies
time lag of maximum temperature vs. t =0

depths of penetration
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Time-Dependent Geotherms

Solution for a Sudden Change in Surface Temperature

Consider 1D heat conduction in the domain z > 0 with
@ initial temperature T(z,0) = Ty and

@ surface temperature switches to T(0,t) = Ts at t = 0.

Relevant for many technical applications and, e. g., for the cooling
of oceanic lithosphere.

Variables z and t cannot be separated here, but a scaling relation
between z and t can be used:

L(t) = vkt (48)

can be seen as a time-dependent length scale, called length scale

of heat conduction.
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Time-Dependent Geotherms

Solution for a Sudden Change in Surface Temperature

Assume that the temperature only depends on the
nondimensional variable

u = = (49)

instead of z and t individually.

Interpretation: Shape of the temperature profile remains
constant, while only the spatial scale changes.
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Time-Dependent Geotherms

Solution for a Sudden Change in Surface Temperature v

Solution:
T(z,t) = Ts+(To— Ts)erf(u) = To+ (Ts — To)erfc(u) (50)

with the Gaussian error function
u
fu) = 2 / -2y (51)
erfflu) = — [ e Ix
NZ3
0
and the complementary error function

erfc(u

/OO dx = 1—erf(u) (52)

3|
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http://hergarten.at/extra/rescaling.pdf
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Time-Dependent Geotherms

Solution for a Sudden Change in Surface Temperature

2 T s . —f(u) = erf(u) ||
: : : ——f(u) = erfc(u)
| = = —relevant partf
+ (0.5,0.5)

|
w
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N
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