Geothermics and Geothermal Energy Geothermal Heating Systems

Stefan Hergarten

Institut für Geo- und Umweltnaturwissenschaften Albert-Ludwigs-Universität Freiburg

Dependencies

The actual heating demand of a building depends on

- the thermal efficiency of the building
- the climatic conditions
- the number and the behavior of the residents.

Data Requirements

Fired heating systems (oil, gas, biofuels, ...): long-term mean power (yearly) and peak power

Geothermal and solar heating systems: time-resolved data (e.g., on a monthly scale)

Thermal Efficiency

The U value of an element of the building's surface (wall, window, ...) quantifies the heat flux density per temperature difference:

$$U = \frac{q}{T_i - T_o} \tag{1}$$

where

q = heat flux density = power per area $\left[\frac{W}{m^2}\right]$

 T_i = inside temperature [K]

 T_o = outside temperature [K]

Unit: $\frac{W}{m^2K}$

Thermal Efficiency

The R value of an element of the building's surface is

$$R = \frac{1}{U} = \frac{T_i - T_o}{q} = \frac{d}{\lambda}$$
 (2)

for a homogeneous material of thickness d and thermal conductivity λ .

Actual required heating power for the entire building:

$$P = \sum_{j} q_{j} A_{j} = \begin{pmatrix} T_{i} & - & T_{o} \\ \uparrow & \uparrow & \uparrow \\ residents & climate & building \end{pmatrix} (3)$$

for $T_i > T_o$ where the A_j are the surface areas of the elements.

The Influence of Climate

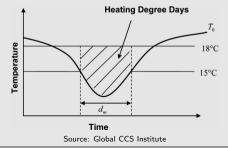
Total energy required for heating during a given time span:

$$E = \int_{T_i > T_o} (T_i - T_o(t)) dt \sum_j U_j A_j$$
 (4)

The integral

$$HDD = \int_{T_i > T_o} (T_i - T_o(t)) dt$$
 (5)

for a fixed T_i (independent of the specific residents' behavior) is called number of heating degree days within the given time span.


Several slightly different ways of calculating the HDD.

The Influence of Climate

Definition established in the EU:

- $T_i = 18^{\circ} \text{C}$
- Use mean temperatures over one-day periods for T_o instead of continuous time.
- Take into account only days below a heating threshold of 15°C.

The Influence of Climate

Total energy required for heating during a given time span:

$$E = \text{HDD} \sum_{j} U_{j} A_{j} \tag{6}$$

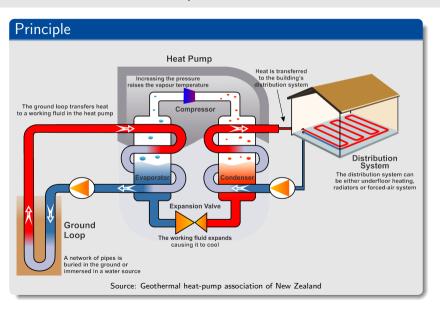
- Obtained unit is W days.
- If the total energy demand, $\sum E$, and total HDD, \sum HDD, for one year are given instead of $\sum_j U_j A_j$:

$$E = \sum E \frac{\mathsf{HDD}}{\sum \mathsf{HDD}} \tag{7}$$

Why?

Domestic heating systems require $T \ge 35^{\circ}$ C (old systems even much more)

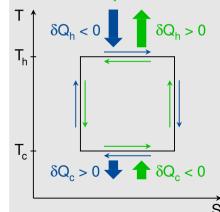
Cannot be achieved by shallow geothermal systems.


Temperature of the fluid in the heat exchanger must be increased using mechanical work.

Principle

Heat engine: heat (hot reservoir) → mechanical work + heat (cold res.)

Heat pump: heat (cold reservoir) + mechanical work → heat (hot res.)



Fundamentals – Thermodynamics

Carnot Cycle and Inverse Carnot Cycle

Carnot cycle Inverse Carnot cycle

Directions:

- ightarrow isothermal expansion (coupled to large reservoir)
- $\leftarrow \quad \text{isothermal compression} \\ \quad \text{(coupled to large reservoir)}$
- isentropic cooling (by rapid expansion)
- isentropic heating
 (by rapid compression)

Fundamentals - Thermodynamics

The Thermodynamic Limit of the Carnot Cycles

$$\delta S = \frac{\delta Q_h}{T_h} + \frac{\delta Q_c}{T_c} \ge 0 \tag{8}$$

where

 δQ_h = thermal energy supplied to to the hot system

 T_h = temperature of the hot system

 δQ_c = thermal energy supplied to the cold system

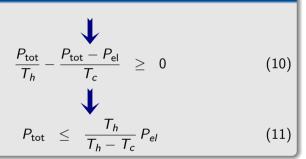
 T_c = temperature of the cold system

 $\delta \textit{Q} < 0$ describes extraction of energy from the system.

The Thermodynamic Limit of a Geothermal Heating System

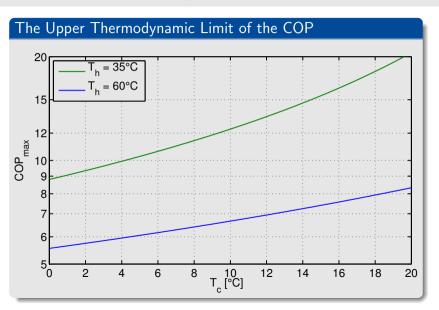
Hot system: heating system, $\delta Q_h > 0$

Cold system: geothermal reservoir, $\delta Q_c < 0$


Thermodynamic limit of the heat pump (Eq. 8) written in terms of total power P_{tot} (to the heating system) and thermal power P_{th} (from the geothermal reservoir):

$$\frac{P_{\text{tot}}}{T_h} - \frac{P_{\text{th}}}{T_c} \geq 0 \tag{9}$$

The difference between P and P_{th} must be supplied as mechanical (electrical) power by the compressor, $P_{el} = P_{tot} - P_{th}$.


The Thermodynamic Limit of a Geothermal Heating System

The Coefficient of Performance

$$COP = \frac{P_{\text{tot}}}{P_{\text{el}}} \le \frac{T_h}{T_h - T_c}$$
 (12)

The COP of Real Heat Pumps

- Real heat pumps achieve a significantly lower performance than the thermodynamic limit, e.g., COP = 5 is very good for $T_h = 35^{\circ}\text{C}$ and $T_c = 0^{\circ}\text{C}$ (instead of COP_{max} = 8.8).
- Data sheets with the COP for different temperatures are provided by some suppliers.
- If not, use the concept of relative efficiency.

The Relative Efficiency

General concept:

$$\eta = \eta_{\mathsf{max}} \, \eta_{\mathsf{rel}} \tag{13}$$

where

 $\eta = {\sf total\ efficiency\ (output/input)}$

 $\eta_{
m max}$ = theoretically possible maximum efficiency

 η_{rel} = relative efficiency of the specific device

For a heat pump: $\eta_{\rm max}$ defined by the thermodynamic limit (inverse Carnot Cycle)

The Relative Efficiency

Two ways to apply the concept of relative efficiency to a heat pump:

Electrical power \rightarrow total power:

$$COP = \frac{P_{\text{tot}}}{P_{\text{el}}} = \eta_{rel} \left(\frac{P_{\text{tot}}}{P_{\text{el}}}\right)_{\text{max}} = \eta_{rel} \frac{T_h}{T_h - T_c} (14)$$

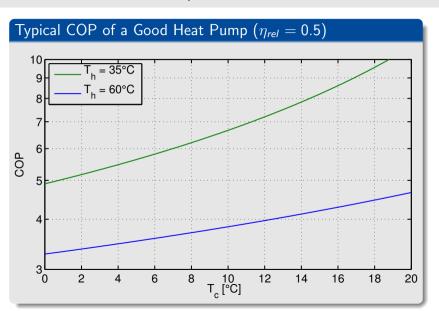
Electrical power \rightarrow thermal power:

$$\frac{P_{\text{th}}}{P_{\text{el}}} = \eta_{\text{rel}} \left(\frac{P_{\text{th}}}{P_{\text{el}}}\right)_{\text{max}} = \eta_{\text{rel}} \left(\frac{P_{\text{tot}} - P_{\text{el}}}{P_{\text{el}}}\right)_{\text{max}} (15)$$

$$= \eta_{\text{rel}} \left(\frac{T_h}{T_h - T_c} - 1\right) = \eta_{\text{rel}} \frac{T_c}{T_h - T_c} (16)$$

The Relative Efficiency

$$COP = \frac{P_{\text{tot}}}{P_{\text{el}}} = 1 + \frac{P_{\text{th}}}{P_{\text{el}}} = 1 + \eta_{rel} \frac{T_c}{T_h - T_c} \qquad (17)$$


• The second concept is physically better.

Use it in the following.

ullet Typical value: $\eta_{rel} pprox 0.5$ for good heat pumps

Actual Energy Prices in Germany

Energy source	Price $\left[\frac{ct}{kWh}\right]$
wood	6
gas	6
oil	7
electricity	28

Heat pump driven by electricity makes sense only if COP \gtrapprox 4.5 in the mean.

Alternative: gas heat pump

The Heat Pump in Geothermal Calculations

- P_{tot} given by the heating demand
- P_{th} required for the calculation of the geothermal system
- P_{el} required for calculating the costs of heating

$$P_{\text{el}} = \frac{P_{\text{tot}}}{1 + \eta_{rel} \frac{T_c}{T_h - T_c}}$$

$$P_{\text{th}} = P_{\text{tot}} - P_{\text{el}} = P_{\text{tot}} - \frac{P_{\text{tot}}}{1 + \eta_{rel} \frac{T_c}{T_h - T_c}}$$

$$= \frac{P_{\text{tot}}}{1 + \frac{1}{\eta_{rel}} \frac{T_h - T_c}{T_c}}$$

$$(18)$$