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Hazard and Risk
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Worldwide Earthquake Hazard
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http://www.seismo.ethz.ch/static/gshap/global/caution.html
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Source: CEDIM Risk Explorer (KIT / GFZ Potsdam)



http://cedim.gfz-potsdam.de/riskexplorer/

Hazard and Risk
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http://cedim.gfz-potsdam.de/riskexplorer/

Hazard and Risk

Worldwide Death Toll of all Geohazards since 1900
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Hazard and Risk

Worldwide Death Toll of all Geohazards Since 1900
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Frequency-Magnitude Relations

Number of events

10° 10" 10%  10®  10*  10° 10® 107
Death toll




Frequency-Magnitude Relations

Cumulative Frequency
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Frequency-Magnitude Relations

Cumulative Frequency

F(s) = expected number of events with sizes > s

@ Can be either considered for a given region (or
worldwide) or per domain size (area).

@ Can be either considered for a given time interval or
per time.

o Often called frequency-magnitude relation.




Frequency-Magnitude Relations

Cumulative Frequency
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Frequency-Magnitude Relations

Pareto Diagram of all Geohazards Since 1900
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Frequency-Magnitude Relations

Pareto Diagram of all Geohazards Since 1900
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Frequency-Magnitude Relations

Pareto Diagram of all Geohazards Since 1900
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Frequency-Magnitude Relations

Frequency Density

f(s) = —F/(s)

s J
/s “f(s)ds = F(s1)— F(s)

is the expected number of events with sizes
between s; and s».
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Frequency-Magnitude Relations

Frequency Density of Rockfalls

Frequency density f(V) [m™]
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Frequency-Magnitude Relations

Frequency Density of Regolith Landslides

Frequency density f(A) [m?]
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Frequency-Magnitude Relations

Cumulative Probability

F(s)
P(s) =
) = Fla)
(so = smallest possible event size) is the

probability that the size of a randomly picked
event is > s.

@ Often sp =0 or sp = —00

@ In mathematics defined as the probability
that a value drawn from a random
distribution is < s.
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Frequency-Magnitude Relations

Probability Density
ps) = ~ P(s)

/ " o(s)ds = P(s1)— P(s2)

the is the probability that the size of a

randomly picked event is between s; and s;.
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Frequency-Magnitude Relations CH
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Pareto Distribution
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Frequency-Magnitude Relations

Exponential Distribution

P(s) = e Ms==0)

\Z

p(s) = Ae A7) = X P(s)
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Frequency-Magnitude Relations

Pareto Distribution vs. Exponential Distribution
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Frequency-Magnitude Relations

Expected Value of Pareto Distribution
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Statistical Tests

Kolmogorov-Smirnov Test

Simplest test whether

@ a given sample might come from a given statistical
distribution

@ two given samples might come from the same
(unknown) statistical distribution

Properties:
The Kolmogorov-Smirnov test

@ does not rely on a certain statistical distribution

@ is not very sensitive
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Maximum-Likelihood Method

Simple Example

3 farms produce apples with different colors at

the following probabilities:

Red | Green | Blue
farm 1 | 0.6 0.3 0.1
farm 2 | 0.3 0.4 0.3
farm 3 | 0.5 0.4 0.1

In a shop we find a sample of 3 red apples, 2
green apples, and 1 blue apple without
declaration. Which is the most likely source of

this sample?
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Maximum-Likelihood Method

Concept

Starting point:
@ Sample of n elements si, ..., s, from a given distribution.

@ Probability density p(s) depends on unknown parameters
Alr oy Ak

Task: Find the most likely values of A1, ..., Ak.

Likelihood of the parameter set A1, ..., Ak
= probability density for the given sample:

L, x) = ] esi)
i=1

Find A1, ..., Ak that maximizes L(\q, ..., Ak).
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Maximum-Likelihood Method

Technical Implementation

Minimize
L1, M) = =) Inp(s)
i=1
either numerically or by the condition(s)

a%(-lnL(Al,...,Ak)) ~ 0
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Waiting-Time Distributions
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Magnetic Field Reversals

Heirtzler et al., 1968 Kent and Gradstein, 1986 Cande & Kent 1995 Huestis & Acton, 1997
o
&, Tin ‘. -
cn cn Lo it
5 — . T o W4 E iy
o o= i ]
S i = W
cam & - 20
) n s
g o B g%w = 2 “E"‘ =
W conin - i b ”;,{
G i T
o ol 4
ad e —
E o K “ "
d h i 2
. 15 Eldidn 4 - & %nn
e B Ll i
o g E L = © . b=
i, e 2 m §1s Hiin
o s e o 5 &
o g iy §
= E n 65| 2 65| g
= SR can 5] » = sen
camn 25| - ik K &
o £ o (4] stn & g
- c29n cenzn 70| an 70| vl
= oh i — 18040 i 9
In e i Ben in
o A=l sk s i s &4
Ellndn camitn W] 2 a0
3 o e wn e b
s
35 el caan QEE a $fnin
onan
| S 5 i 50 priv
Elfgn ik » b
40| c17nin 6n.2n R
Effia
&R -
Quelle: Woods Hole Oceanographic Institution

27 / 46


http://deeptow.whoi.edu/gpts.html

Waiting-Time Distributions

Magnetic Field Reversals
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Waiting-Time Distributions

Theoretical Concept

T = time since the last event took place
Cumulative waiting-time distribution

P(T) = probability that a period of quiescence has
a length of at least T
= probability that there is no event until T

What is the meaning of

—£P(T) - d
P(T) — P(T)  dT

\T) =
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Waiting-Time Distributions

Theoretical Concept
General solution:
P(T) = e o XB)dt
Simplest situation: A(T) = const:
P(T) = 7

For which model A(T) are the waiting
times Pareto-distributed?
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Heavy-Tailed Distributions

Definition

Assume events (or waiting-times) with a given
distribution P(s) and consider the expected value
s — so for those events with s > sy for a given
threshold size sp.

Light-tailed distribution: s — sy — 0 for sy — oo

Heavy-tailed distribution: s — sy — oo for sp — oo

Medium-tailed distribution: else
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Assessment of Predictions
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Receiver Operating Characteristic Curves
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https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://commons.wikimedia.org/w/index.php?curid=44059691
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Assessment of Predictions

Receiver Operating Characteristic Curves

Normalization:

UN
FRE

P(TP)+ P(FN) = 1
P(TN)+ P(FP) = 1

\Z

ROC curve only describes the test, but not

the probability that an event occurs.
Example: COVID-19 test at an incidence of

500 per 100000, P(TP) = 99 %,

P(FP) =1%. What does a positive test

mean?
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Receiver Operating Characteristic Curves

Probabilities if g = probability of occurrence:

alarm no alarm
event qP(TP) q P(FN)
no event | (1—q)P(FP) | (1—q)P(TN)
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Assessment of Predictions

Analysis of Benefit and Cost

R = qP(TP)(L—M+ C)+qP(FN)L
+(1—q) P(FP) C
= qL—q(M—C)P(TP)+(1-q)CP(FP)

FRE

where

= total risk
= loss caused by an event

N X ~ X
|
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Earthquake Prediction

Debate in the Nature Magazine 1999

Topic: Is the reliable prediction of individual earthquakes a
realistic scientific goal?

Extent: 26 contributions over 7 weeks

Outcomes concerning 4 levels of predictability:

Level Target Consensus
1 time-independent hazard yes
2 time-dependent hazard
(a) earthquake cycle no consensus
(b) clustering of earthquakes yes
3 intermediate (1-10yr) to not possible in
short-term (< 1yr) forecasting | the near future
4 deterministic prediction no
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http:/hergarten.at/extra/naturedebate99.pdf

Earthquake Prediction

Earthquake Precursors

Two groups of precursors:

Seismic precursors: spatial and temporal pattern of seismicity

@ Starting from analysis of foreshocks
@ Several approaches; rather address intermediate-term
(1-10yr) forecasting than prediction

Non-seismic precursors: all other changes in the crust and the
atmosphere that could announce an earthquake
@ Gas emissions
o Water level changes in wells

o Electromagnetic signals
o ...
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https://link.springer.com/referenceworkentry/10.1007/978-90-481-8702-7_4

Earthquake Prediction

The M8 Algorithm

@ Aims at forecasting earthquakes with M > 8.0.
@ Based on a retrospective analysis of the seismic
patterns prior to earthquakes with M > 8.0.

@ Considers 262 overlapping circles of 668 km radius
in the regions where such earthquakes occurred.

0’ 45° 90° 135° 180° 135° 90° 45°
Ny MR P 0

e LI
« A

60° [ . (T {60°
30/ 30°
. . ¢
0 ~ 10
30° /- L~/ 7 30
60° ) 'o"

e A (‘
3 45 9 135 1800 135 90 45

Source: Molchan & Romashkova, Geophys. J. Int., 2010

BURG

FRE

38/46


https://link.springer.com/referenceworkentry/10.1007/978-90-481-8702-7_157
https://doi.org/10.1111/j.1365-246X.2010.04810.x

Earthquake Prediction

The M8 Algorithm

@ Derives 7 functions from the seismic activity in each
circle.

Large earthquake =

Source: Ismail-Zadeh & Kossobokov, Encyclopedia of Solid Earth Geophysics, 2011

@ Gives an alert (time of increased probability, TIP)
for a b-year period based on these functions.
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https://link.springer.com/referenceworkentry/10.1007/978-90-481-8702-7_157
https://link.springer.com/referenceworkentry/10.1007/978-90-481-8702-7_157

Earthquake Prediction

The M8 Algorithm

e Modified version: M8-MSc (Mendocino Scenario)
@ Performance over a 25 year period:
Version | Captured events | Total alarm

M8 13 out of 18 32.93%
M8-MSc 10 out of 18 16.78 %

Source: Ismail-Zadeh & Kossobokov, Encyclopedia of Solid Earth Geophysics, 2011
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https://link.springer.com/referenceworkentry/10.1007/978-90-481-8702-7_157
https://link.springer.com/referenceworkentry/10.1007/978-90-481-8702-7_157
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Earthquake Prediction

The VAN Method

@ Developed by P. Varotsos, K. Alexopoulos,
and K. Nomikos in the 1980s.

@ Still the only non-seismic method that is
continuously applied for short-term
forecasting (some weeks).

@ Based on transient variations in the

electric potential measured dipoles of
buried electrodes.
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https://link.springer.com/referenceworkentry/10.1007/978-90-481-8702-7_4

Earthquake Prediction

The VAN Method

@ Apparently reasonable performance, but
only a few systematic tests.
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https://link.springer.com/referenceworkentry/10.1007/978-90-481-8702-7_4
https://link.springer.com/referenceworkentry/10.1007/978-90-481-8702-7_4
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Self-organized Criticality
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The Bak-Tang-Wiesenfeld (BTW) Model

Source: Bak, How Nature Works
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Self-organized Criticality

The Bak-Tang-Wiesenfeld (BTW) model
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Self-organized Criticality
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The Bak-Tang-Wiesenfeld (BTW) Model

Source: Bak, How Nature Works
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Self-organized Criticality

The Olami-Feder-Christensen (OFC) Model
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