Hazard, Risk and Prediction

Stefan Hergarten

Institut für Geo- und Umweltnaturwissenschaften Albert-Ludwigs-Universität Freiburg

[Source: CEDIM Risk Explorer \(KIT / GFZ Potsdam\)](http://cedim.gfz-potsdam.de/riskexplorer/)

Regional Earthquake Risk

Cumulative Frequency

Cumulative Frequency

 $F(s)$ = expected number of events with sizes $\geq s$

- Can be either considered for a given region (or worldwide) or per domain size (area).
- Can be either considered for a given time interval or per time.
- Often called frequency-magnitude relation.

Cumulative Frequency

Pareto Diagram of all Geohazards Since 1900

Pareto Diagram of all Geohazards Since 1900

Frequency Density

$$
f(s) = -F'(s)
$$

$$
\bigvee_{s_1}^{s_2} f(s) ds = F(s_1) - F(s_2)
$$

is the expected number of events with sizes between s_1 and s_2 .

Cumulative Probability

$$
P(s) = \frac{F(s)}{F(s_0)}
$$

 $(s₀ =$ smallest possible event size) is the probability that the size of a randomly picked event is $> s$.

- \bullet Often $s_0 = 0$ or $s_0 = -\infty$
- In mathematics defined as the probability that a value drawn from a random distribution is $\leq s$.

Probability Density

$$
p(s) = -P'(s)
$$

$$
\bigvee_{s_1}^{s_2} p(s) ds = P(s_1) - P(s_2)
$$

the is the probability that the size of a randomly picked event is between s_1 and s_2 .

Pareto Distribution

$$
P(s) = \left(\frac{s}{s_0}\right)^{-b}
$$

$$
\downarrow
$$

$$
p(s) = -P'(s)
$$

$$
= b s_0^b s^{-b-1}
$$

$$
= \frac{b}{s_0} \left(\frac{s}{s_0}\right)^{-(b+1)}
$$

Exponential Distribution

\n
$$
P(s) = e^{-\lambda(s-s_0)}
$$
\n
$$
p(s) = \lambda e^{-\lambda(s-s_0)} = \lambda P(s)
$$

Pareto Distribution vs. Exponential Distribution

Expected Value of Pareto Distribution

$$
\overline{s} = \int_{s_0}^{\infty} p(s) s ds
$$

=
$$
\begin{cases} \frac{b}{b-1} s_0 & b > 1 \\ \infty & \text{for } b \le 1 \end{cases}
$$

Expected Value of Exponential Distribution

$$
\overline{s} = \int_{s_0}^{\infty} p(s) s \, ds = s_0 + \frac{1}{\lambda}
$$

Statistical Tests

Kolmogorov-Smirnov Test

Simplest test whether

- a given sample might come from a given statistical distribution
- two given samples might come from the same (unknown) statistical distribution

Properties:

The Kolmogorov-Smirnov test

- **o** does not rely on a certain statistical distribution
- is not very sensitive

Simple Example

3 farms produce apples with different colors at the following probabilities:

In a shop we find a sample of 3 red apples, 2 green apples, and 1 blue apple without declaration. Which is the most likely source of this sample?

Concept

Starting point:

- Sample of *n* elements s_1, \ldots, s_n from a given distribution.
- Probability density $p(s)$ depends on unknown parameters $\lambda_1, \ldots, \lambda_k$.

Task: Find the most likely values of $\lambda_1, \ldots, \lambda_k$.

Likelihood of the parameter set $\lambda_1, \ldots, \lambda_k$ $=$ probability density for the given sample:

$$
L(\lambda_1,\ldots,\lambda_k) = \prod_{i=1}^n p(s_i)
$$

Find $\lambda_1, \ldots, \lambda_k$ that maximizes $L(\lambda_1, \ldots, \lambda_k)$.

Technical Implementation

Minimize

$$
-\ln L(\lambda_1,\ldots,\lambda_k) = -\sum_{i=1}^n \ln p(s_i)
$$

either numerically or by the condition(s)

$$
\frac{\partial}{\partial \lambda_i} \left(- \ln L(\lambda_1, \ldots, \lambda_k) \right) = 0
$$

Waiting-Time Distributions

Waiting-Time Distributions

Waiting-Time Distributions

Theoretical Concept

 $T =$ time since the last event took place

Cumulative waiting-time distribution

- $P(T)$ = probability that a period of quiescence has a length of at least T
	- $=$ probability that there is no event until T

What is the meaning of

$$
\lambda(T) = \frac{-\frac{d}{dT}P(T)}{P(T)} = \frac{1}{P(T)} = -\frac{d}{dT}
$$
 ?

Theoretical Concept

General solution:

$$
P(T) = e^{-\int_0^T \lambda(t) dt}
$$

Simplest situation: $\lambda(T) = \text{const.}$

$$
P(T) = e^{-\lambda T}
$$

For which model $\lambda(T)$ are the waiting times Pareto-distributed?

Definition

Assume events (or waiting-times) with a given distribution $P(s)$ and consider the expected value $\sqrt{s - s_0}$ for those events with $s > s_0$ for a given threshold size s_0 .

Light-tailed distribution: $\overline{s-s_0} \to 0$ for $s_0 \to \infty$ Heavy-tailed distribution: $\overline{s-s_0} \to \infty$ for $s_0 \to \infty$ Medium-tailed distribution: else

Assessment of Predictions

Assessment of Predictions

Receiver Operating Characteristic Curves

Normalization:

```
P(TP) + P(FN) = 1P(TN) + P(FP) = 1
```
ROC curve only describes the test, but not the probability that an event occurs.

```
Example: COVID-19 test at an incidence of
500 per 100000, P(TP) = 99\%,
 P(FP) = 1\%. What does a positive test
 mean?
```


Receiver Operating Characteristic Curves

Probabilities if $q =$ probability of occurrence:

Assessment of Predictions

Analysis of Benefit and Cost

$$
R = q P(TP)(L - M + C) + q P(FN) L
$$

+ (1 - q) P(FP) C
= q L - q (M - C) P(TP) + (1 - q) C P(FP)

where

- $R =$ total risk
- $L =$ loss caused by an event

 $M =$

 $C =$

[Debate in the Nature Magazine 1999](http:/hergarten.at/extra/naturedebate99.pdf)

Topic: Is the reliable prediction of individual earthquakes a realistic scientific goal?

Extent: 26 contributions over 7 weeks

Outcomes concerning 4 levels of predictability:

[Earthquake Precursors](https://link.springer.com/referenceworkentry/10.1007/978-90-481-8702-7_4)

Two groups of precursors:

Seismic precursors: spatial and temporal pattern of seismicity

- Starting from analysis of foreshocks
- Several approaches; rather address intermediate-term (1–10 yr) forecasting than prediction

Non-seismic precursors: all other changes in the crust and the atmosphere that could announce an earthquake

- **e** Gas emissions
- Water level changes in wells
- **•** Electromagnetic signals

 \bullet ...

[The M8 Algorithm](https://link.springer.com/referenceworkentry/10.1007/978-90-481-8702-7_157)

- Aims at forecasting earthquakes with $M > 8.0$.
- Based on a retrospective analysis of the seismic patterns prior to earthquakes with $M > 8.0$.
- Considers 262 overlapping circles of 668 km radius in the regions where such earthquakes occurred.

[The M8 Algorithm](https://link.springer.com/referenceworkentry/10.1007/978-90-481-8702-7_157)

• Derives 7 functions from the seismic activity in each circle.

Source: [Ismail-Zadeh & Kossobokov, Encyclopedia of Solid Earth Geophysics, 2011](https://link.springer.com/referenceworkentry/10.1007/978-90-481-8702-7_157)

Gives an alert (time of increased probability, TIP) for a 5-year period based on these functions.

[The M8 Algorithm](https://link.springer.com/referenceworkentry/10.1007/978-90-481-8702-7_157)

- Modified version: M8-MSc (Mendocino Scenario)
- Performance over a 25 year period:

Source: [Ismail-Zadeh & Kossobokov, Encyclopedia of Solid Earth Geophysics, 2011](https://link.springer.com/referenceworkentry/10.1007/978-90-481-8702-7_157)

[The VAN Method](https://link.springer.com/referenceworkentry/10.1007/978-90-481-8702-7_4)

- Developed by P. Varotsos, K. Alexopoulos, and K. Nomikos in the 1980s.
- Still the only non-seismic method that is continuously applied for short-term forecasting (some weeks).
- **•** Based on transient variations in the electric potential measured dipoles of buried electrodes.

[The VAN Method](https://link.springer.com/referenceworkentry/10.1007/978-90-481-8702-7_4)

Apparently reasonable performance, but only a few systematic tests.

The Bak-Tang-Wiesenfeld (BTW) model

The Olami-Feder-Christensen (OFC) Model

