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Hazard and Risk

Worldwide Earthquake Hazard

Source: Global Seismic Hazard Assessment Program
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http://www.seismo.ethz.ch/static/gshap/global/caution.html


Hazard and Risk

Regional Earthquake Hazard

Source: CEDIM Risk Explorer (KIT /GFZ Potsdam)
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http://cedim.gfz-potsdam.de/riskexplorer/


Hazard and Risk

Regional Earthquake Risk
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Hazard and Risk

Worldwide Death Toll of all Geohazards since 1900
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Hazard and Risk
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Frequency-Magnitude Relations

Binning
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Frequency-Magnitude Relations

Cumulative Frequency
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Frequency-Magnitude Relations

Cumulative Frequency

F (s) = expected number of events with sizes ≥ s

Can be either considered for a given region (or
worldwide) or per domain size (area).

Can be either considered for a given time interval or
per time.

Often called frequency-magnitude relation.
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Frequency-Magnitude Relations

Cumulative Frequency
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Frequency-Magnitude Relations

Pareto Diagram of all Geohazards Since 1900
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Frequency-Magnitude Relations

Pareto Diagram of all Geohazards Since 1900
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Frequency-Magnitude Relations

Pareto Diagram of all Geohazards Since 1900
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Frequency-Magnitude Relations

Frequency Density

f (s) = − F ′(s)

∫ s2

s1

f (s) ds = F (s1)− F (s2)

is the expected number of events with sizes
between s1 and s2.
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Frequency-Magnitude Relations

Frequency Density of Rockfalls
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Frequency-Magnitude Relations

Frequency Density of Regolith Landslides
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Frequency-Magnitude Relations

Cumulative Probability

P(s) =
F (s)

F (s0)

(s0 = smallest possible event size) is the
probability that the size of a randomly picked
event is ≥ s.

Often s0 = 0 or s0 = −∞
In mathematics defined as the probability
that a value drawn from a random
distribution is ≤ s.
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Frequency-Magnitude Relations

Probability Density

p(s) = − P ′(s)

∫ s2

s1

p(s) ds = P(s1)− P(s2)

the is the probability that the size of a
randomly picked event is between s1 and s2.
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Frequency-Magnitude Relations

Pareto Distribution

P(s) =

(
s

s0

)−b

p(s) = −P ′(s)

= b sb0 s
−b−1

=
b

s0

(
s

s0

)−(b+1)
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Frequency-Magnitude Relations

Exponential Distribution

P(s) = e−λ(s−s0)

p(s) = λ e−λ(s−s0) = λP(s)
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Frequency-Magnitude Relations

Pareto Distribution vs. Exponential Distribution

Slope in diagram Pareto Distribution Exponential Distribution

axis scaling
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Frequency-Magnitude Relations

Expected Value of Pareto Distribution

s =

∫ ∞
s0

p(s) s ds

=

{
b

b−1 s0 b > 1

∞ for
b ≤ 1

Expected Value of Exponential Distribution

s =

∫ ∞
s0

p(s) s ds = s0 +
1

λ
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Statistical Tests

Kolmogorov-Smirnov Test

Simplest test whether

a given sample might come from a given statistical
distribution

two given samples might come from the same
(unknown) statistical distribution

Properties:
The Kolmogorov-Smirnov test

does not rely on a certain statistical distribution

is not very sensitive
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Maximum-Likelihood Method

Simple Example

3 farms produce apples with different colors at
the following probabilities:

Red Green Blue

farm 1 0.6 0.3 0.1

farm 2 0.3 0.4 0.3

farm 3 0.5 0.4 0.1

In a shop we find a sample of 3 red apples, 2
green apples, and 1 blue apple without
declaration. Which is the most likely source of
this sample?
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Maximum-Likelihood Method

Concept

Starting point:

Sample of n elements s1, . . . , sn from a given distribution.

Probability density p(s) depends on unknown parameters
λ1, . . . , λk .

Task: Find the most likely values of λ1, . . . , λk .

Likelihood of the parameter set λ1, . . . , λk
= probability density for the given sample:

L(λ1, ... ,λk) =
n∏

i=1

p(si )

Find λ1, . . . , λk that maximizes L(λ1, ... ,λk).
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Maximum-Likelihood Method

Technical Implementation

Minimize

− ln L(λ1, ... ,λk) = −
n∑

i=1

ln p(si )

either numerically or by the condition(s)

∂

∂λi
(− ln L(λ1, ... ,λk)) = 0
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Waiting-Time Distributions

Magnetic Field Reversals

Quelle: Woods Hole Oceanographic Institution
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http://deeptow.whoi.edu/gpts.html


Waiting-Time Distributions

Magnetic Field Reversals
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Waiting-Time Distributions

Theoretical Concept

T = time since the last event took place

Cumulative waiting-time distribution

P(T ) = probability that a period of quiescence has

a length of at least T

= probability that there is no event until T

What is the meaning of

λ(T ) =
− d

dT P(T )

P(T )
=

P(T )
= − d

dT
?
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Waiting-Time Distributions

Theoretical Concept

General solution:

P(T ) = e−
∫ T
0 λ(t) dt

Simplest situation: λ(T ) = const:

P(T ) = e−λT

For which model λ(T ) are the waiting
times Pareto-distributed?
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Heavy-Tailed Distributions

Definition

Assume events (or waiting-times) with a given
distribution P(s) and consider the expected value
s − s0 for those events with s ≥ s0 for a given
threshold size s0.

Light-tailed distribution: s − s0 → 0 for s0 →∞
Heavy-tailed distribution: s − s0 →∞ for s0 →∞
Medium-tailed distribution: else
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Assessment of Predictions

Receiver Operating Characteristic Curves
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FP
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Source: Wikipedia, ©Sharpr
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https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://commons.wikimedia.org/w/index.php?curid=44059691


Assessment of Predictions

Receiver Operating Characteristic Curves

Normalization:

P(TP) + P(FN) = 1

P(TN) + P(FP) = 1

ROC curve only describes the test, but not
the probability that an event occurs.

Example: COVID-19 test at an incidence of
500 per 100000, P(TP) = 99 %,
P(FP) = 1 %. What does a positive test
mean?
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Assessment of Predictions

Receiver Operating Characteristic Curves

Probabilities if q = probability of occurrence:

alarm no alarm

event q P(TP) q P(FN)

no event (1− q)P(FP) (1− q)P(TN)
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Assessment of Predictions

Analysis of Benefit and Cost

R = q P(TP) (L−M + C ) + q P(FN) L

+(1− q)P(FP)C

= q L− q (M − C )P(TP) + (1− q)C P(FP)

where

R = total risk

L = loss caused by an event

M =

C =
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Earthquake Prediction

Debate in the Nature Magazine 1999

Topic: Is the reliable prediction of individual earthquakes a
realistic scientific goal?

Extent: 26 contributions over 7 weeks

Outcomes concerning 4 levels of predictability:

Level Target Consensus

1 time-independent hazard yes

2 time-dependent hazard
(a) earthquake cycle no consensus
(b) clustering of earthquakes yes

3 intermediate (1–10 yr) to not possible in
short-term (< 1 yr) forecasting the near future

4 deterministic prediction no
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http:/hergarten.at/extra/naturedebate99.pdf


Earthquake Prediction

Earthquake Precursors

Two groups of precursors:

Seismic precursors: spatial and temporal pattern of seismicity

Starting from analysis of foreshocks
Several approaches; rather address intermediate-term
(1–10 yr) forecasting than prediction

Non-seismic precursors: all other changes in the crust and the
atmosphere that could announce an earthquake

Gas emissions
Water level changes in wells
Electromagnetic signals
. . .
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https://link.springer.com/referenceworkentry/10.1007/978-90-481-8702-7_4


Earthquake Prediction

The M8 Algorithm

Aims at forecasting earthquakes with M ≥ 8.0.

Based on a retrospective analysis of the seismic
patterns prior to earthquakes with M ≥ 8.0.

Considers 262 overlapping circles of 668 km radius
in the regions where such earthquakes occurred.

Source: Molchan & Romashkova, Geophys. J. Int., 2010
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https://link.springer.com/referenceworkentry/10.1007/978-90-481-8702-7_157
https://doi.org/10.1111/j.1365-246X.2010.04810.x


Earthquake Prediction

The M8 Algorithm

Derives 7 functions from the seismic activity in each
circle.

Source: Ismail-Zadeh & Kossobokov, Encyclopedia of Solid Earth Geophysics, 2011

Gives an alert (time of increased probability, TIP)
for a 5-year period based on these functions.
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https://link.springer.com/referenceworkentry/10.1007/978-90-481-8702-7_157
https://link.springer.com/referenceworkentry/10.1007/978-90-481-8702-7_157


Earthquake Prediction

The M8 Algorithm

Modified version: M8-MSc (Mendocino Scenario)

Performance over a 25 year period:

Version Captured events Total alarm

M8 13 out of 18 32.93 %

M8-MSc 10 out of 18 16.78 %

Source: Ismail-Zadeh & Kossobokov, Encyclopedia of Solid Earth Geophysics, 2011
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https://link.springer.com/referenceworkentry/10.1007/978-90-481-8702-7_157
https://link.springer.com/referenceworkentry/10.1007/978-90-481-8702-7_157


Earthquake Prediction

The VAN Method

Developed by P. Varotsos, K. Alexopoulos,
and K. Nomikos in the 1980s.

Still the only non-seismic method that is
continuously applied for short-term
forecasting (some weeks).

Based on transient variations in the
electric potential measured dipoles of
buried electrodes.
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https://link.springer.com/referenceworkentry/10.1007/978-90-481-8702-7_4


Earthquake Prediction

The VAN Method

Apparently reasonable performance, but
only a few systematic tests.

TP

FP

FN

Source: Uyeda et al., Encyclopedia of Solid Earth Geophysics, 2011
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https://link.springer.com/referenceworkentry/10.1007/978-90-481-8702-7_4
https://link.springer.com/referenceworkentry/10.1007/978-90-481-8702-7_4


Self-organized Criticality

The Bak-Tang-Wiesenfeld (BTW) Model

Source: Bak, How Nature Works
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Self-organized Criticality

The Bak-Tang-Wiesenfeld (BTW) model
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Self-organized Criticality

The Bak-Tang-Wiesenfeld (BTW) Model

Source: Bak, How Nature Works
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Self-organized Criticality

The Olami-Feder-Christensen (OFC) Model
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