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Introduction

Seismology

Comprises all about earthquakes and the
propagation of seismic waves in the Earth.

One of the main fields of solid-earth geophysics.

Has provided the majority of our knowledge on
Earth’s interior.

Seismics

Exploration of the deep and shallow subsurface with
the help of artificial seismic waves.

The perhaps most important field of applied
geophysics.
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Worldwide Distribution of Earthquakes
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Introduction

Earthquake Hazard

Source: Global Seismic Hazard Assessment Program
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http://www.seismo.ethz.ch/static/gshap/global/caution.html


Introduction

Cumulative Death Toll Since 1970
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https://www.public.emdat.be


Introduction

The First “Seismometer” (132 a.D.)
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Introduction

History of Seismology

1660 basic law of elasticity R. Hooke

1821–22 differential equations of elasticity C. Navier, A. L. Cauchy

1830 theory of two fundamental types of elastic
waves (P- and S-wave)

S. D. Poisson

1875 First “serious” seismometer F. Gecchi

1887 theory of the first type of surface waves J. W. Strutt (3. Lord Rayleigh)

1889 first recording of a distant earthquake

1892 first compact seismometer, used at about 40
stations

J. Milne

1894 statistics of aftershocks F. Omori

1903 12 degree scale for the intensity of earthquakes
based on the damage

G. Mercalli
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Introduction

History of Seismology

1906–1913 detection of the liquid core of the earth and
determination of its size

R. D. Oldham, B. Gutenberg

1909 detection of the crust-mantle discontinuity A. Mohorovic̆ić

1911 theory of a second type of surface waves A. E. H. Love

1935 local magnitude as an “objective” measure of
earthquake intensity

C. F. Richter

1936 detection of the inner, solid core I. Lehmann

1954 frequency-magnitude relation of earthquakes B. Gutenberg, C. F. Richter

1975 first successful short-term prediction of a strong
earthquake

1977 moment magnitude as a measure of earthquake
source strength

H. Kanamori
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Theory of Seismic Waves

The Navier-Cauchy Equations in Seismology

Small, but spatially and temporally variable
displacement ~u(~x , t)

Neglect gravity

Sign convention as in mathematics, physics, and
engineering

Elastic deformation

ρ
∂2

∂t2
~u =


∂σ11
∂x1

+ ∂σ12
∂x2

+ ∂σ13
∂x3

∂σ21
∂x1

+ ∂σ22
∂x2

+ ∂σ23
∂x3

∂σ31
∂x1

+ ∂σ32
∂x2

+ ∂σ33
∂x3

 = div(σ) (1)
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Theory of Seismic Waves

The Navier-Cauchy Equations in Seismology

with the stress tensor

σ = λ εv 1 + 2µ ε, (2)

the strain tensor ε consisting of the components

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (3)

the volumetric strain

εv = ε11 + ε22 + ε33, (4)

the density ρ, and
the Lamé parameters of the medium λ and µ
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One-Dimensional Wave Propagation

The Navier-Cauchy Equations in 1D

Displacement u(x , t) instead of ~u(~x , t).

ρ
∂2

∂t2
u =

∂

∂x
σ (5)

with

σ = (λ+ 2µ) ε = (λ+ 2µ)
∂

∂x
u (6)

ρ
∂2

∂t2
u(x , t) =

∂

∂x

(
(λ+ 2µ)

∂

∂x
u(x , t)

)
(7)

14 / 131



One-Dimensional Wave Propagation

The Navier-Cauchy Equations in 1D

Solution if λ and µ are constant:

u(x , t) = f (t ± sx) (8)

where

f = arbitrary function describing

= the shape of the wave

s =

√√√√ = slowness [ ]
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One-Dimensional Wave Propagation

Example
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One-Dimensional Wave Propagation

The Retarded Time

τ = t ± sx is called retarded time.

Meaning: At the position x and time t, we
observe what happened at the origin (x = 0,
e. g. earthquake focus) at the retarded time
τ = t ± sx .
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One-Dimensional Wave Propagation

The Shape of the Wave

Examples for the function f :

f (τ) =

{
1 for τ ≥ T
0 else

describes a step-like shape (shock wave).

f (τ) =

{
1 for |τ | ≤ T

2
0 else

describes a boxcar-shaped wave.

f (τ) = a cos(ωτ), f (τ) = a sin(ωτ) or
f (τ) = a e iωτ describes a harmonic wave
with angular frequency ω and amplitude a.
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Harmonic Waves

Basic Terms

0

0

t

u
(x

,t
)

 

 

x = 0

x > 0

20 / 131



Harmonic Waves
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Harmonic Waves

Basic Terms

Time domain:

Angular frequency: ω [ ]

Frequency: ν = ω
2π [ ]

Period: T = 1
ν = 2π

ω [ ]

Spatial wave pattern:

Wave number: k = ωs [ ]

Wavelength: L = 2π
k = 1

νs [ ]
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Harmonic Waves

The Complex Exponential Function vs. Sine and Cosine

With e iφ = cosφ+ i sinφ, the complex exponential function
combines the real exponential function with the sine and cosine
functions.
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Harmonic Waves

The Complex Exponential Function vs. Sine and Cosine

Re
(
e iωτ

)
= cos (ωτ) (9)

Im
(
e iωτ

)
= sin (ωτ) (10)

Real part and imaginary part of the complex solution can be
considered as independent real solutions.
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Harmonic Waves

The Complex Exponential Function vs. Sine and Cosine

Derivatives of the complex solutions are simpler than those of
the real solutions:

∂

∂τ
e iωτ = (11)

while

∂

∂τ
cos (ωτ) = (12)

∂

∂τ
sin (ωτ) = (13)
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Seismic Body Waves

Seismic Waves in 3D

Complications towards the 1D case:

Displacement ~u(~x , t) is a vector.

Propagation in arbitrary direction in space
instead of the positive or negative x axis
only.
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Seismic Body Waves

Fundamental Types of Body Waves

Two types of independent plane waves in an infinite,
homogeneous elastic medium:

Compressional wave (longitudinal wave, primary wave)

Source: L. Braile, Purdue University
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http://web.ics.purdue.edu/~braile/edumod/waves/Pwave.htm
http://web.ics.purdue.edu/~braile/edumod/waves/WaveDemo.htm


Seismic Body Waves

Fundamental Types of Body Waves

Shear wave (transverse wave, secondary wave)

Source: L. Braile, Purdue University
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http://web.ics.purdue.edu/~braile/edumod/waves/Swave.htm
http://web.ics.purdue.edu/~braile/edumod/waves/WaveDemo.htm


Seismic Body Waves

Plane Waves in Homogeneous, Isotropic Media

Plane wave: ~u(~x , t) is constant on parallel planes.

Mathematical description:

~u(~x , t) = f (t −~s · ~x)~a (14)

or for a harmonic wave:

~u(~x , t) = e iω(t−~s·~x)~a (15)

where

~s = slowness vector

~a = amplitude vector (constant)
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Seismic Body Waves

Plane Waves in Homogeneous, Isotropic Media

Simplest version: propagation in x1 direction, ~s =
(

s
0
0

)

~u(~x , t) = f (t − sx1)~a (16)

ε = − s f ′(t − sx1)


 (17)
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Seismic Body Waves

Plane Waves in Homogeneous, Isotropic Media

σ = − s f ′(t − sx1)


 (18)

div(σ) = s2f ′′(t − sx1)


 (19)

if λ and µ are constant.
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Seismic Body Waves

Plane Waves in Homogeneous, Isotropic Media

Insert into the Navier-Cauchy equations:

ρ
∂2

∂t2
~u = ρf ′′(t − sx1)~a (20)

= div(σ) = s2f ′′(t − sx1)

(
(λ+ 2µ)a1

µa2

µa3

)
(21)

Can only be satisfied if

= 0 and s =
√

(longitudinal polarization)
or

= 0 and s =
√

(transverse polarization).
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Seismic Body Waves

Plane Waves in Homogeneous, Isotropic Media

General case: Navier-Cauchy equations can be satisfied only
if either ~a is parallel (or opposite) to ~s or normal to ~s.

Transverse wave: ~a is normal to ~s (~a ·~s = 0)

|~s|2 =
ρ

µ
, vs =

1

|~s|
=

√
µ

ρ
(22)

Longitudinal wave: ~a is parallel or opposite to ~s

|~s|2 =
ρ

λ+ 2µ
, vp =

1

|~s|
=

√
λ+ 2µ

ρ
(23)
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Seismic Body Waves

Comparison with Sound Waves in Liquids and Gases

The longitudinal wave is similar to sound waves in liquids and gases,
while the transverse wave has no counterpart in liquids and gases.

Seismic Velocities

Medium Longitudinal wave [ km
s ] Transverse wave [ km

s ]

air 0.34 –

water 1.45 –

wood about 3 about 1.8

Earth∗ 5.8–13.7 3.4–7.2

∗Parametric Earth Models (PEM), not valid for the shallow subsurface
34 / 131

http://ds.iris.edu/spud/earthmodel/9991828


Seismic Body Waves

Seismic Velocities

vp
vs

=

√
λ+ 2µ

µ
≥
√

4

3
≈ 1.15 (24)

Longitudinal wave always arrives prior to the transverse
wave.

longitudinal wave = primary wave (P-wave)
transverse wave = secondary wave (S-wave)

35 / 131



Seismic Body Waves

Typical vp-vs Ratios

For solid rocks:

vp
vs

=

√
λ+ 2µ

µ
≈
√

3 ≈ 1.7 (25)

for λ ≈ µ.

For soil or unconsolidated rocks:

vp
vs
≈ 2.5 (26)

36 / 131



Seismic Body Waves

Seismic Velocities According to the Parametric Earth Models (PEM)
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http://ds.iris.edu/spud/earthmodel/9991828


Seismic Body Waves

Density According to the Parametric Earth Models (PEM)
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http://ds.iris.edu/spud/earthmodel/9991828


Seismic Body Waves

Lamé Parameters According to the Parametric Earth Models (PEM)
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http://ds.iris.edu/spud/earthmodel/9991828


Seismic Body Waves

Typical P-wave Velocities in the Shallow Subsurface

Medium vp [ km
s ] Medium vp [ km

s ]

weathering zone 0.1–0.5 clay 1.2–2.8

dry sand 0.3–0.6 claystone 2.2–4.2

water-saturated sand 1.3–1.8 limestone 3–6

sandstone 1.8–4 halite 4.5–6.5

pit coal 1.6–1.9 granite 5–6.5
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Earthquake Source Theory

The Point-Force Solution

Infinite, homogeneous medium with parameters ρ, λ,
and µ (like plane wave consideration).

Assume that a given force ~F (t) acts at ~x = ~0.

Solution of the Navier-Cauchy equations:

~uf(~x , t) =
s2
p

4πρr
P~F (t − spr) +

s2
s

4πρr
(1− P) ~F (t − ssr)

+
1

4πρr3
(3P− 1)

∫ ss r

spr
τ~F (t − τ)dτ (27)

where

r = |~x |
P = projection on the radial direction
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Earthquake Source Theory

The Point-Force Solution

~uf(~x , t) =
s2
p

4πρr
P~F (t − spr) +

s2
s

4πρr
(1− P) ~F (t − ssr)

+
1

4πρr3
(3P− 1)

∫ ss r

spr
τ~F (t − τ)dτ (28)

Example:
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Earthquake Source Theory

The Point-Force Solution

Spatial pattern of the first term,

P~F ,

for

~F =

 0
0
1
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Earthquake Source Theory

The Point-Force Solution

Spatial pattern of the second term,

(1− P) ~F ,

for

~F =

 0
0
1
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Earthquake Source Theory

The Point-Force Solution

Spatial pattern of the third term,

(3P− 1) ~F , (29)

for

~F =

 0
0
1
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Earthquake Source Theory

Force Couples

Solution for a single point force causes an overall displacement in
direction of the force.

not possible

Consider a couple of opposite forces ~F and −~F displaced by a
small vector ~a (at ~a

2 and −~a2 ):

~u(~x , t) = ~uf(~x − ~a
2 , t)− ~uf(~x + ~a

2 , t) ≈ (30)
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http://hergarten.at/extra/moment_tensor.pdf


Earthquake Source Theory

Force Couples

~uf(~x , t) =
s2
p

4πρr
P~F (t − spr) +

s2
s

4πρr
(1− P) ~F (t − ssr)

+
1

4πρr3
(3P− 1)

∫ ss r

spr
τ~F (t − τ)dτ (31)

−∇~uf(~x , t) =
s2
p

4πρr
P +

s2
s

4πρr
(1− P)

+ terms with 1
r2 , 1

r3 , . . . (32)

where ~e = ~x
r = unit vector in radial direction.
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http://hergarten.at/extra/moment_tensor.pdf


Earthquake Source Theory

The Seismic Moment Tensor

~u(~x , t) = − (∇~uf(~x , t))~a (33)

=
s3
p

4πρr
P +

s3
s

4πρr
(1− P)

+ terms with 1
r2 , 1

r3 , . . . (34)

=
s3
p

4πρr
P +

s3
s

4πρr
(1− P)

+ terms with 1
r2 , 1

r3 , . . . (35)

with the seismic moment tensor (centroid moment tensor, CMT)

M(t) = ~F (t)~aT [Nm] (36)
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http://hergarten.at/extra/moment_tensor.pdf


Earthquake Source Theory

Components of the Seismic Moment Tensor

Source: Shearer, Introduction to Seismology
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Earthquake Source Theory

Seismic Waves vs. Permanent Displacement

Terms with the longest range (∼ 1
r ) depend on Ṁ and not on M.

Vanish some time after the earthquake has terminated.

Transient displacement = seismic waves

~u(~x , t) =
s3
p

4πρr
PṀ(t − spr)~e

↑
P-wave

+
s3
s

4πρr
(1− P) Ṁ(t − ssr)~e

↑
S-wave

(37)

with ~e = ~x
r and P = ~e ~eT
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http://hergarten.at/extra/moment_tensor.pdf


Earthquake Source Theory

Seismic Waves vs. Permanent Displacement

Terms ∼ 1
r2 also contain components with M.

Persist after the earthquake has terminated (M = const.)

Permanent displacement
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http://hergarten.at/extra/moment_tensor.pdf


Earthquake Source Theory

Seismic Wave Patterns

P-wave radiation pattern

PṀ~e

for

Ṁ =

 0 0 0
0 0 0
0 0 1
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Earthquake Source Theory

Seismic Wave Patterns

S-wave radiation pattern

(1− P) Ṁ~e

for

Ṁ =

 0 0 0
0 0 0
0 0 1
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Earthquake Source Theory

Seismic Wave Patterns

P-wave radiation pattern

PṀ~e

for

Ṁ =

 0 0 0
0 0 0
1 0 0
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Earthquake Source Theory

Seismic Wave Patterns

S-wave radiation pattern

(1− P) Ṁ~e

for

Ṁ =

 0 0 0
0 0 0
1 0 0
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Earthquake Source Theory

Symmetry of the Seismic Moment Tensor

Nondiagonal components of M cause an
overall rotation.

not possible

M must be symmetric: Mji = Mij .
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Earthquake Source Theory

Seismic Wave Patterns

P-wave radiation pattern

PṀ~e

for

Ṁ =

 0 0 1
0 0 0
1 0 0
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Earthquake Source Theory

Seismic Wave Patterns

S-wave radiation pattern

(1− P) Ṁ~e

for

Ṁ =

 0 0 1
0 0 0
1 0 0
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Earthquake Source Theory

Seismic Wave Patterns

P-wave radiation pattern

PṀ~e

for

Ṁ =

 −1 0 0
0 0 0
0 0 1
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Earthquake Source Theory

Seismic Wave Patterns

S-wave radiation pattern

(1− P) Ṁ~e

for

Ṁ =

 −1 0 0
0 0 0
0 0 1
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Earthquake Source Theory

The Scalar Seismic Moment

If

M =

 0 0 M0

0 0 0
M0 0 0

 or M =

 −M0 0 0
0 0 0
0 0 M0

 (38)

(or similar), M0 is called (scalar) seismic moment.

In general:

M0 =
M1 −M3

2
(39)

where M1, M2, and M3 are the eigenvalues of M in descending
order.
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Earthquake Source Theory

The Scalar Seismic Moment

Alternative interpretation of the seismic moment:

M0 = µAu (40)

where

A = size of the rupture area [m2]

u = mean displacement along the rupture area [m]
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Earthquake Source Theory

Seismic Moment vs. Moment Rate for the Alaska 1964 Earthquake

0 30 60 90 120 150 180 210
0

2

4

6

8

10
x 10

20

t [s]

d
/d

t 
M

0
 [

N
m

/s
]

0 30 60 90 120 150 180 210
0

2

4

6

8

10
x 10

22

M
0
 [

N
m

]

63 / 131



Earthquake Source Theory

Amplitudes of Body Waves

P-wave displacement:

~up(~x , t) =
s3
p

4πρr
PṀ(t − spr)~e (41)

Maximum displacement occurs in the directions of the first and
third principal axes of Ṁ:

|~up|max =
s3
p

4πρr
|Ṁ0|max (42)
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Earthquake Source Theory

Amplitudes of Body Waves

S-wave displacement:

~us(~x , t) =
s3
s

4πρr
(1− P) Ṁ(t − ssr)~e (43)

Maximum displacement occurs in the directions 45◦ between the
first and third principal axis of Ṁ:

|~us |max =
s3
s

4πρr
|Ṁ0|max (44)

|~us |max

|~up|max
=

s3
s

s3
p

=

(
vp
vs

)3

≈ 5 (45)
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Earthquake Source Theory

Strike, Dip, and Rake of a Double Force Couple

Definition of strike φ, dip δ, and rake λ according to Aki and
Richards (1980)

Source: Toda et al., Coulomb 3.3 User Guide
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http://pubs.usgs.gov/of/2011/1060/


Earthquake Source Theory

Beachball Plots

Source: Earthquake-Report.com
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http://earthquake-report.com/2014/05/17/understanding-the-mystery-of-earthquake-beach-balls/


Earthquake Source Theory

Beachball Plots

Source: Ph.D. thesis A. Belmonte-Pool, FU Berlin
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http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000000739


Earthquake Source Theory

Beachball Plots

Basic assumption: Ṁ(t) has the same shape as M(t),

M(t) = f (t)M, Ṁ(t) = ḟ (t)M (46)

where M is the total seismic moment, and f (t) increases
from 0 to 1.

P-wave arrives with

compression (M~e) · ~e > 0

dilatation
first if

(M~e) · ~e < 0
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Earthquake Source Theory

Beachball Plots

Source: US Geological Survey
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http://quake.usgs.gov/


Earthquake Source Theory

Examples of Beachball Plots

normal fault (λ = −90◦) for different dip angles δ

reverse fault (λ = 90◦) for different dip angles δ

transform fault (λ = 0◦) for different dip angles δ

fault dipping at δ = 45◦ for different rake angles λ

fault dipping at δ = 45◦ for different rake angles λ
with additional isotropic expansion
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http://hergarten.at/extra/bbnormal.pdf
http://hergarten.at/extra/bbreverse.pdf
http://hergarten.at/extra/bbtransform.pdf
http://hergarten.at/extra/bbrake.pdf
http://hergarten.at/extra/bbexpansion.pdf
http://hergarten.at/extra/bbexpansion.pdf


Earthquake Magnitude

Intensity and Magnitude

Intensity describes the severity of an earthquake in terms of its effects on
the Earth’s surface and on humans and their structures.

Usually written as a Roman numeral.
Goes back to a 12 level scale (originally 10) from I (not felt) to
XII (total destruction) named after G. Mercalli (1850–1914).
Several extensions / refinements: MCS (Mercalli-Cancani-Sieberg)
scale, MWN (Mercalli-Wood-Neumann) scale, MSK scale
(Medvedev, Sponheuer & Karnik, 1964), EMS-98 scale (European
Macroseismic Scale, 2000).

Magnitude characterizes the size of an earthquake using measured values.

Usually written as an Arabic numeral with one decimal digit.
Several different magnitude definitions.
Logarithmic scale.
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Earthquake Magnitude

Example of an Isoseismal Map of Earthquake Intensity

Source: USGS
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http://earthquake.usgs.gov/learn/glossary/?term=isoseismal (line)


Earthquake Magnitude

General Definition of Earthquake Magnitude

If X is any physically measured property of an earthquake, e. g.

total seismic moment M0 or

maximum ground displacement |~u|max,

the corresponding earthquake magnitude is defined by

MX = e log10

(
X

X0

)
(47)

where

X0 = measured value for an earthquake of MX = 0 under
the same conditions

e = factor used for making different magnitude definitions
consistent (mostly e = 1)
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Earthquake Magnitude

General Definition of Earthquake Magnitude

If X is a property related to any point different from the
earthquake focus, X0 is a function of distance ∆ and depth h (and
other properties).

MX = e log10

(
X

X0(∆, h)

)
= e log10 X + σ(∆, h) (48)

with the distance-depth correction function

σ(∆, h) = − e log10 X0(∆, h) (49)

This only makes sense if the distance-depth dependence of X is
independent of X itself.
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Earthquake Magnitude

Upper und Lower Limits of Magnitude Scales

All magnitude scales are from their definition open
and both ends.

Upper limits on Earth are introduced by geological
constraints and by the process of wave propagation.

Negative magnitudes are possible. The definition of
zero magnitude is arbitrary and corresponds to what
was detectable when the first magnitude definition
(C. F. Richter, 1935) was introduced.
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Earthquake Magnitude

The Local Magnitude (Richter Scale)

Introduced by C. F.
Richter in 1935.

Symbol: ML or ML

X is the maximum
amplitude A of a
specific device, the
Wood-Anderson
seismometer.

Source: Southern California Earthquake Data Center
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Earthquake Magnitude

The Wood-Anderson Seismometer

Oscillation by torsion of a wire

Electromagnetic damping

Natural period of ≈ 0.8 s (frequency f0 = 1.25 Hz); close to
the natural period of many building structures.

Relevant for earthquake hazard.

Maximum magnification (record vs. ground displacement) of
≈ 2080 at f0; sometimes a wrong value of 2800 was assumed.

Local magnitudes derived from synthesized seismograms were
too high for some time. 78 / 131



Earthquake Magnitude

The Wood-Anderson Seismometer

Source: C. J. Ammon, Pennsylvania State University
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http://eqseis.geosc.psu.edu/~cammon/HTML/Classes/IntroQuakes/Notes/earthquake_size.html


Earthquake Magnitude

The Local Magnitude (Richter Scale)

The local magnitude was originally defined as

ML = log10 A (50)

where the maximum amplitude A of the Wood-Anderson
seismometer is measured in µm at 100 km distance from the
epicenter.

e = 1 1 unit increase in magnitude corresponds to an
increase in the instrument’s amplitude by a factor 10.

Originally only a distance correction σ(∆) = − log10 A0(∆)
for shallow earthquakes (h ≤ 15 km) in California was
provided.
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Earthquake Magnitude

Richter’s Original Distance Correction

Source: C. J. Ammon, Pennsylvania State University
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Intensity and Magnitude

Determining the Local Magnitude of an Earthquake
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Earthquake Magnitude

The Surface-Wave Magnitude

Symbol: MS or MS

Original definition by B. Gutenberg (1945):

MS = log10 uh max + σ(∆) (51)

where uh max is the maximum horizontal ground displacement
at periods from T = 18 s to 22 s.

Widely used modified definition (Moscow-Prague formula,
1962):

MS = max

{
log10

|~u|
T

}
+ 1.66 log10 ∆ + 3.3 (52)

for 2◦ ≤ ∆ ≤ 160◦. The maximum is taken over all periods
of surface waves. 83 / 131



Earthquake Magnitude

Body-Wave Magnitudes

Two significantly different definitions

Symbols: mB , mB, mb, mb,

Original definition by B. Gutenberg (1945):

mB = max

{
log10

|~u|
T

}
+ σ(∆) (53)

where |~u| is analyzed for different types of body waves
separately (with different functions σ(∆) at periods from
T = 0.5 s to 12 s.

Alternative definition (mb, mb) refers to higher-frequency
components of P-waves only.
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Earthquake Magnitude

The Moment Magnitude

MW = 2
3 log10 M0 − 6.1 (54)

with M0 in Nm

Introduced in 1977 by H. Kanamori in order to characterize
large earthquakes.

More closely related to the strength of earthquakes at the
seismic focus than older magnitude definitions.

Rather a tectonic than a seismological magnitude scale.

Why is e = 2
3 here while e = 1 for other magnitude scales?
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Earthquake Magnitude

Scaling Properties of Earthquakes

Source: Bormann (ed), New Manual of Seismological Observatory Practice
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Earthquake Magnitude

Scaling Properties of Earthquakes

Alternative interpretation of the seismic moment (Eq. 40):

M0 = µAu (55)

where

A = size of the rupture area [m2]

u = mean displacement along the rupture area [m]

Simplest idea for the relation between A, u, and M0:

u ∼ ∼ and A ∼ (56)
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Earthquake Magnitude

Scaling Properties of Earthquakes

Assume that rupture propagates along the rupture area
at a given speed.

Duration

τ ∼ L ∼ ∼ (57)

Wave amplitude

|~u| ∼ Ṁ0 ∼
M0

τ
∼ (58)
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Earthquake Magnitude

Scaling Properties of Earthquakes
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Earthquake Magnitude

The Energy Magnitude

Theoretical relationship for the total energy of all seismic waves
suggested by H. Kanamori (1977):

E ≈ 5× 10−5 M0 (59)

Corresponding definition of the energy magnitude:

ME = 2
3 log10

E

5× 10−5
− 6.1 = log10 E − (60)

Up to one order of magnitude deviation from Kanamori’s relationship
was found for individual earthquakes.

Differences between ME and MW up to for individual earthquakes.
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Earthquake Magnitude

Saturation of Magnitudes

All magnitudes based on recording seismic waves fall below
MW for large earthquakes.

Effect is stronger if short-term (high-frequency) components
of the seismic waves are used.

Source: Bormann (ed), New Manual of Seismological Observatory Practice
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Propagation of Seismic Waves in Inhomogeneous Media

Global Wave Propagation in the Earth’s Interior

Source: Shearer, Introduction to Seismology
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Propagation of Seismic Waves in Inhomogeneous Media

Travel Time Curves

Source: Southern Arizona Seismic Observatory
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http://www.geo.arizona.edu/saso/


Propagation of Seismic Waves in Inhomogeneous Media

Reflection and Refraction

Simplest case: two homogeneous, isotropic halfspaces
with different properties (λ, µ, ρ) and plane waves in
each of them; horizontal interface at x3 = 0.

Source: University College London
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http://hergarten.at/extra/reflection.pdf
http://www.ucl.ac.uk/EarthSci/people/lidunka/GEOL2014/Geophysics4 - Seismic waves/SEISMOLOGY .htm


Propagation of Seismic Waves in Inhomogeneous Media

Reflection and Refraction

Each wave is considered as a plane wave

~u(~x , t) = f (t −~s · ~x)~a (61)

with individual values ~s and ~a where either

~a ‖ ~s and |~s| = sp =

√
ρ

λ+ 2µ
(62)

or

~a ⊥ ~s and |~s| = ss =

√
ρ

µ
(63)
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Propagation of Seismic Waves in Inhomogeneous Media

Reflection and Refraction

Displacement must be continuous at x3 = 0.

τ = t −~s · ~x = t − s1x1 − s2x2 (64)

must be the same for all waves at the interface.

Components of ~s parallel to the interface (s1, s2) must be the
same for all waves.

Horizontal slowness remains constant in reflection and refraction.
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Propagation of Seismic Waves in Inhomogeneous Media

Reflection and Refraction

Second condition at the interface:

Stress acting on the interface, given by

~σint = σ|x3=0

(
0
0
1

)
(65)

must be continuous.

Continuity of displacement and stress at the interface

Linear equation system for the amplitude vectors ~a of
the 5 involved waves.
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Propagation of Seismic Waves in Inhomogeneous Media

Conversion of Waves in Reflection and Refraction

Align the coordinate system in such a way that all waves propagate in the
x1-x3 plane (s2 = 0, possible because s1 and s2 are the same for all involved
waves).

Vertically polarized S-wave (SV-wave):

a2 = 0 particle displacement in the x1-x3 plane (and normal to
wave propagation)

Converted to (and from) P and SV waves in reflection and refraction

Horizontally polarized S-wave (SH-wave):

a1 = a3 = 0 particle displacement in x2 direction

Independent of P and SV waves
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Propagation of Seismic Waves in Inhomogeneous Media

Conversion of Waves in Reflection and Refraction

Incident P-wave Incident SH-wave Incident SV-wave
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http://hergarten.at/extra/reflection.pdf
http://hergarten.at/extra/incp.pdf
http://hergarten.at/extra/incs.pdf
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Propagation of Seismic Waves in Inhomogeneous Media

Ray and Wave Front Approaches

Plane wave approach and spherical wave solutions are only
valid in a homogeneous medium.

Generalization:

Wave fronts are no longer planes,
but arbitrary surfaces.

Direction of propagation is normal
to the wave fronts.

Ray paths are lines following the
local direction of propagation
(no longer straight lines).

Source: Wikipedia, © ???
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Propagation of Seismic Waves in Inhomogeneous Media

Ray and Wave Front Approaches

Extensions towards the plane wave approach:

Replace

~u(~x , t) = f (t −~s · ~x)~a (66)

by

~u(~x , t) = f (t − ψ(~x))~a(~x) (67)

Retarded time τ = t − ψ(~x) instead of τ = t −~s · ~x
with a general phase function ψ(~x)

Spatially variable amplitude vector ~a(~x)
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Propagation of Seismic Waves in Inhomogeneous Media

Ray and Wave Front Approaches

Wave fronts: surfaces where ψ(~x) is constant

Direction of propagation: Wave propagates locally in
direction of ∇ψ(~x).

Slowness: ~s(~x) = ∇ψ(~x) defines the local slowness
vector.

Ray paths: lines following the direction of ~s = ∇ψ
Limitation: Only valid in the limit of high frequencies.
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Propagation of Seismic Waves in Inhomogeneous Media

Ray and Wave Front Approaches

Main results:

Types of waves: two independent types of waves (P-wave and
S-wave); amplitude vector ~a is either parallel or normal to
~s = ∇ψ at each point; no reflection; no merging of both
wave types

Slowness/speed: same relationship as for plane and spherical
waves (eikonal equation)

|~s|2 = |∇ψ|2 =
ρ

λ+ 2µ
or |~s|2 = |∇ψ|2 =

ρ

µ
(68)
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Propagation of Seismic Waves in Inhomogeneous Media

Ray and Wave Front Approaches

Amplitudes: Absolute values of the amplitudes are
determined by the condition

div(~q) = 0 (69)

with the “energy flux density”

~q = ρ |~a|2 ~v = ε~v (70)

and the “energy density” ε = ρ|~a|2.
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Propagation of Seismic Waves in Inhomogeneous Media

Geometrical and Numerical Approaches

Numerical solution of the eikonal equation: one-sided
difference quotients for ψ(~x) from the considered
points to neighbors where ψ is already known;
similar to upstream scheme.

Huygens’ princple: Construct wave fronts (planes where
ψ(~x) is constant) progressively for increasing values
of ψ; rather a geometrical approach than a
numerical method.

Ray tracing: Compute individual rays (lines in direction
of ∇ψ(~x)).
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Propagation of Seismic Waves in Inhomogeneous Media

Construction of Wave Fronts – Huygens’ Princple

Source: WillowWood Lessons
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http://willowwoodlessons.weebly.com/lesson-6---light-wave-or-particle.html


Propagation of Seismic Waves in Inhomogeneous Media

Construction of Ray Paths

~s changes along the ray path in direction of
increasing slowness (decreasing velocity).

Horizontal slowness remains constant.

Source: Shearer, Introduction to Seismology

Horizontal direction in seismology = planes where the
properties of the material are constant.
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Interface Waves and Surface Waves

The Waves Disappearing in Reflection and Refraction

For all waves involved in refection and refraction at a planar
interface (s2 = 0): s1 given and

|~s|2 = s2
1 + s2

3 =

{
1
v2
p

= ρ
λ+2µ P-waves

1
v2
s

= ρ
µ

for
S-waves

(71)

given.

Waves cannot propagate if s1 > |~s|, but

s3 = ±
√
|~s|2 − s2

1 = ±
√

(72)

would be a formal solution.
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Interface Waves and Surface Waves

Harmonic Interface Waves

For a harmonic wave:

~u(~x , t) = e iω(t−~s·~x)~a = e
iω
(
t−s1x1∓i

√
s2

1−|~s|2x3

)
~a (73)

= e iω(t−s1x1) e
± x3 ~a (74)

Can be considered as a wave propagating along the interface (here
in x1 direction) with an amplitude depending on x3:

~u(~x , t) = e iω(t−s1x1)~aeff (75)

with the effective amplitude

~aeff = e
± x3 ~a (76)
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Interface Waves and Surface Waves

The Depth of Penetration of Interface Waves

~aeff = e
± x3 ~a = e±

x3
d ~a (77)

with the depth of penetration

d =
1

=
L

2π
√ (78)

and the wavelength L = 2π
ωs1

.

d → if the wave is only slightly too slow for
the medium (s1 → |~s|).

d → if the wave is much too slow for the
medium (s1 � |~s|). 110 / 131
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Interface Waves and Surface Waves

Particle Orbits of P and SV Interface Waves

Examples of particle orbits for an incident SV wave at the
crust-mantle boundary: α = 20◦, α = 30◦, α = 40◦, α = 70◦

General properties:

Particles move on elliptical orbits.

Horizontal ellipses for P interface waves, vertical ellipses for S
interface waves.

Aspect ratio of the ellipses = 1√
1− |~s|

2

s2
1

.

Prograde rotation in the lower halfspace; retrograde rotation
in the upper halfspace.
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Interface Waves and Surface Waves

Amplitudes at the Crust-Mantle Boundary
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Interface Waves and Surface Waves

Surface Waves at a Free Surface

Interface waves: driven by plane waves (incident, reflected,
refracted)

Surface waves: living on their own at a free surface (interface to
air); ~σsurf = ~0

Two fundamental types of surface waves in a semi-infinite
halfspace:

Rayleigh wave, named after J. W. Strutt (later 3. Lord Rayleigh)

Love wave, named after A. E. H. Love
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Interface Waves and Surface Waves

The Love Wave

Source: L. Braile, Purdue University

The same as SH interface wave; not possible in a homogeneous
halfspace because ~σsurf 6= ~0 for a2 6= 0.
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http://web.ics.purdue.edu/~braile/edumod/waves/Lwave.htm
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Interface Waves and Surface Waves

The Rayleigh Wave

Source: L. Braile, Purdue University

Specific superposition of P and SV interface wave so that ~σsurf = ~0
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Interface Waves and Surface Waves

The Rayleigh Wave in a Homogeneous Poisson Solid (λ = µ)
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Interface Waves and Surface Waves

The Rayleigh Wave in a Homogeneous Poisson Solid (λ = µ)

Retrograde particle motion on elliptical orbits at the surface.

Prograde particle motion on elliptical orbits at greater depth.

Velocity v ≈ 0.92 vs .

117 / 131

http://hergarten.at/extra/rayleighwaves.pdf


Interface Waves and Surface Waves

The Rayleigh Wave in a Homogeneous Poisson Solid (λ = µ)
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Interface Waves and Surface Waves

The Rayleigh Wave in a Homogeneous Halfspace
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Interface Waves and Surface Waves

Main Differences Between Body Waves and Surface Waves

Decrease with the distance from the hypocenter/epicenter r :

Energy flux density Amplitude

body waves ∝ 1
r2 ∝ 1

r

surface waves ∝ 1
r ∝ 1√

r

Surface waves have a longer range than body waves.

Velocity of harmonic surface waves depends on the
wavelength (dispersion).
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Interface Waves and Surface Waves

Dispersion

Simplest situation: superposition of two harmonic waves with the
same amplitude (= 1), but different frequencies in 1D:

u(x , t) = e iω1(t−s1x) + e iω2(t−s2x) = e i(ω1t−k1x) + e i(ω2t−k2x)(79)

with k1 = ω1s1, k2 = ω2s2.

Example: k1 = 10, k2 = 11
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Interface Waves and Surface Waves

Dispersion

u(x , t) = e iω1(t−s1x) + e iω2(t−s2x) = e i(ω1t−k1x) + e i(ω2t−k2x)(80)

= e
i
(
ωt+

ω1−ω2
2

t−kx− k1−k2
2

x
)

+ e
i
(
ωt−ω1−ω2

2
t−kx+

k1−k2
2

x
)

(81)

= e i(ωt−kx)
(
e
i
(

ω1−ω2
2

t− k1−k2
2

x
)

+ e
i
(
−ω1−ω2

2
t+

k1−k2
2

x
))

(82)

= e i(ωt−kx)2 cos
(
ω1−ω2

2 t − k1−k2
2 x

)
(83)

= e
iω
(
t− k

ω
x
)

2 cos
(
ω1−ω2

2

(
t − k1−k2

ω1−ω2
x
))

(84)

with ω = ω1+ω2
2 , k = k1+k2

2 .
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Interface Waves and Surface Waves

Dispersion

For ω1 ≈ ω2, k1 ≈ k2:

High-frequency oscillation with an angular frequency ω

propagating with the phase slowness sph = k
ω

Low-frequency oscillation of the amplitude with an angular
frequency ω1−ω2

2 propagating with the group slowness

sgr =
k1 − k2

ω1 − ω2
→ dk

dω
for ω1 − ω2 → 0 (85)
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Interface Waves and Surface Waves

Velocities in Typical Continental Subsurface (PEM)
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Interface Waves and Surface Waves

Velocities in Typical Continental Subsurface (PEM)
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Interface Waves and Surface Waves

Dispersion of Rayleigh Waves in Typical Continental Subsurface
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Interface Waves and Surface Waves

Dispersion of Rayleigh Waves in Typical Continental Subsurface
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Interface Waves and Surface Waves

Dispersion of Rayleigh Waves in Typical Continental Subsurface

400 600 800 1000 1200 1400 1600 1800 2000 2200

t [s]

-0.1

-0.05

0

0.05

0.1

N
o

rm
a

liz
e

d
 v

e
lo

c
it
y
 [

-/
s
]

x = 5000 km

128 / 131



Interface Waves and Surface Waves

Dispersion of Rayleigh Waves in Typical Continental Subsurface
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Interface Waves and Surface Waves

Dispersion of Rayleigh Waves in Typical Continental Subsurface
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Interface Waves and Surface Waves

Dispersion of Rayleigh Waves in Typical Continental Subsurface
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