Seismology and Seismic Hazard

Stefan Hergarten

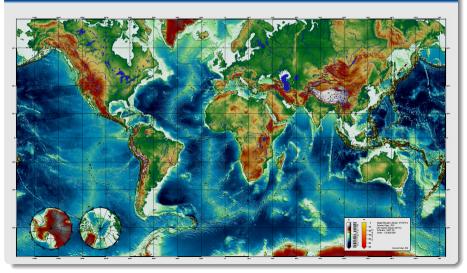
Institut für Geo- und Umweltnaturwissenschaften Albert-Ludwigs-Universität Freiburg

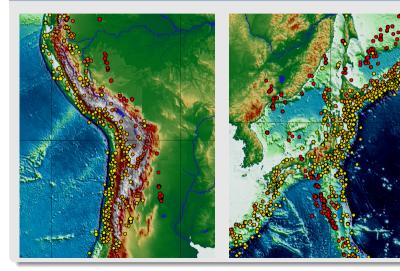
Seismology

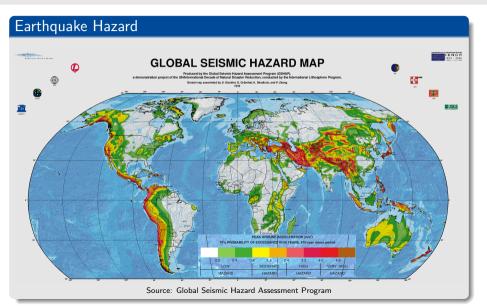
- Comprises all about earthquakes and the propagation of seismic waves in the Earth.
- One of the main fields of solid-earth geophysics.
- Has provided the majority of our knowledge on Earth's interior.

Seismics

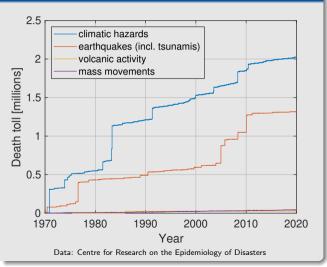
- Exploration of the deep and shallow subsurface with the help of artificial seismic waves.
- The perhaps most important field of applied geophysics.

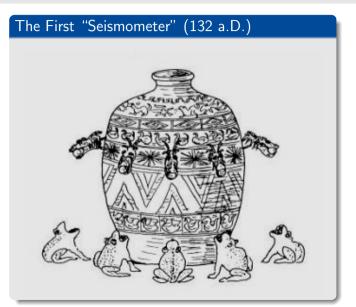






Cumulative Death Toll Since 1970





History of Seismology

1660	basic law of elasticity	R. Hooke
1821–22	differential equations of elasticity	C. Navier, A. L. Cauchy
1830	theory of two fundamental types of elastic waves (P- and S-wave)	S. D. Poisson
1875	First "serious" seismometer	F. Gecchi
1887	theory of the first type of surface waves	J. W. Strutt (3. Lord Rayleigh)
1889	first recording of a distant earthquake	
1892	first compact seismometer, used at about 40 stations	J. Milne
1894	statistics of aftershocks	F. Omori
1903	12 degree scale for the intensity of earthquakes based on the damage	G. Mercalli

History of Seismology

detection of the liquid core of the earth and R.D. Oldham, B. Gutenberg 1906-1913 determination of its size A. Mohorovičić 1909 detection of the crust-mantle discontinuity 1911 theory of a second type of surface waves A.E.H. Love 1935 local magnitude as an "objective" measure of C. F. Richter earthquake intensity 1936 detection of the inner, solid core I Lehmann 1954 frequency-magnitude relation of earthquakes B. Gutenberg, C. F. Richter 1975 first successful short-term prediction of a strong earthquake moment magnitude as a measure of earthquake H. Kanamori 1977 source strength

Theory of Seismic Waves

The Navier-Cauchy Equations in Seismology

- Small, but spatially and temporally variable displacement $\vec{u}(\vec{x}, t)$
- Neglect gravity
- Sign convention as in mathematics, physics, and engineering
- Elastic deformation

$$\rho \frac{\partial^2}{\partial t^2} \vec{u} = \begin{pmatrix} \frac{\partial \sigma_{11}}{\partial x_1} + \frac{\partial \sigma_{12}}{\partial x_2} + \frac{\partial \sigma_{13}}{\partial x_3}\\ \frac{\partial \sigma_{21}}{\partial x_1} + \frac{\partial \sigma_{22}}{\partial x_2} + \frac{\partial \sigma_{23}}{\partial x_3}\\ \frac{\partial \sigma_{31}}{\partial x_1} + \frac{\partial \sigma_{32}}{\partial x_2} + \frac{\partial \sigma_{33}}{\partial x_3} \end{pmatrix} = \operatorname{div}(\boldsymbol{\sigma}) \quad (1)$$

Theory of Seismic Waves

FREIBURG

The Navier-Cauchy Equations in Seismology

with the stress tensor

$$\boldsymbol{\sigma} = \lambda \, \epsilon_{\mathbf{v}} \, \mathbf{1} + 2\mu \, \boldsymbol{\epsilon}, \qquad (2)$$

the strain tensor ϵ consisting of the components

$$\epsilon_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right), \qquad (3)$$

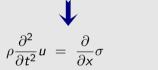
the volumetric strain

$$\epsilon_{\nu} = \epsilon_{11} + \epsilon_{22} + \epsilon_{33}, \tag{4}$$

the density $\rho,$ and the Lamé parameters of the medium λ and μ

The Navier-Cauchy Equations in 1D

Displacement u(x, t) instead of $\vec{u}(\vec{x}, t)$.



(5)

with

The Navier-Cauchy Equations in 1D

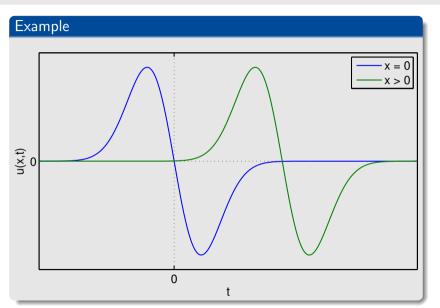
Solution if λ and μ are constant:

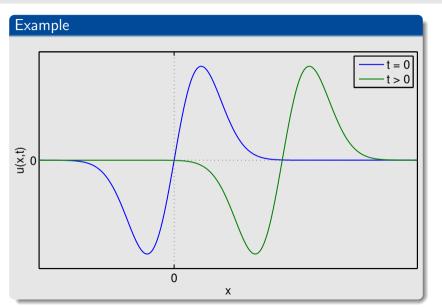
$$u(x,t) = f(t \pm sx)$$
 (8)

where

- f = arbitrary function describing
 - = the shape of the wave

$$s = \sqrt{----} = \text{slowness [}$$





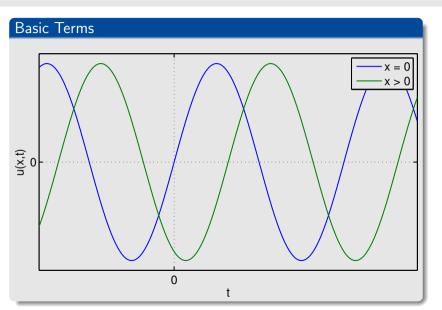
The Retarded Time

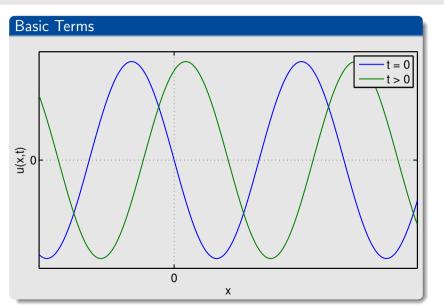
 $au = t \pm sx$ is called retarded time.

Meaning: At the position x and time t, we observe what happened at the origin (x = 0, e.g. earthquake focus) at the retarded time $\tau = t \pm sx$.

The Shape of the Wave

Examples for the function f: • $f(\tau) = \begin{cases} 1 & \text{for } \tau \geq T \\ 0 & \text{else} \end{cases}$ describes a step-like shape (shock wave). • $f(\tau) = \begin{cases} 1 & \text{for } |\tau| \le \frac{T}{2} \\ 0 & \text{else} \end{cases}$ describes a boxcar-shaped wave. • $f(\tau) = a \cos(\omega \tau), f(\tau) = a \sin(\omega \tau)$ or $f(\tau) = a e^{i\omega\tau}$ describes a harmonic wave with angular frequency ω and amplitude *a*.





Basic Terms

• Time domain:

Angular frequency: ω [

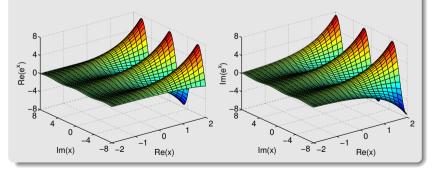
- Frequency: $u = rac{\omega}{2\pi}$ [
- Period: $T = \frac{1}{\nu} = \frac{2\pi}{\omega}$ [
- Spatial wave pattern:

Wave number: $k = \omega s$ [

Wavelength: $L = \frac{2\pi}{k} = \frac{1}{\nu s}$ [

The Complex Exponential Function vs. Sine and Cosine

With $e^{i\phi} = \cos \phi + i \sin \phi$, the complex exponential function combines the real exponential function with the sine and cosine functions.



The Complex Exponential Function vs. Sine and Cosine

$$\operatorname{Re}\left(e^{i\omega\tau}\right) = \cos\left(\omega\tau\right) \tag{9}$$

$$\operatorname{Im}\left(e^{i\omega\tau}\right) = \sin\left(\omega\tau\right) \tag{10}$$

Real part and imaginary part of the complex solution can be considered as independent real solutions.

while

The Complex Exponential Function vs. Sine and Cosine

Derivatives of the complex solutions are simpler than those of the real solutions:

$$\frac{\partial}{\partial \tau} e^{i\omega\tau} =$$
(11)
$$\frac{\partial}{\partial \tau} \cos(\omega\tau) =$$
(12)
$$\frac{\partial}{\partial \tau} \sin(\omega\tau) =$$
(13)

Seismic Waves in 3D

Complications towards the 1D case:

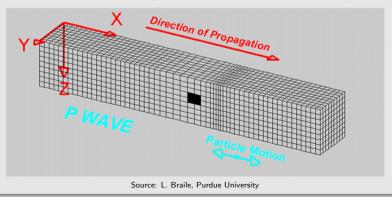
- Displacement $\vec{u}(\vec{x}, t)$ is a vector.
- Propagation in arbitrary direction in space instead of the positive or negative *x* axis only.

FREIBURG

Fundamental Types of Body Waves

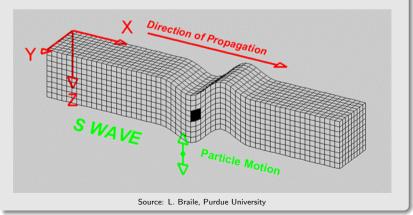
Two types of independent plane waves in an infinite, homogeneous elastic medium:

• Compressional wave (longitudinal wave, primary wave)



Fundamental Types of Body Waves

• Shear wave (transverse wave, secondary wave)



Plane Waves in Homogeneous, Isotropic Media

Plane wave: $\vec{u}(\vec{x}, t)$ is constant on parallel planes. Mathematical description:

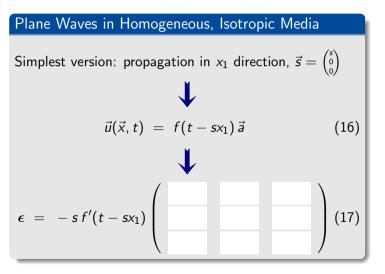
$$\vec{u}(\vec{x},t) = f(t-\vec{s}\cdot\vec{x})\vec{a} \qquad (14)$$

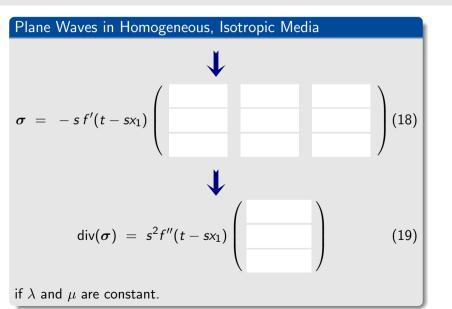
or for a harmonic wave:

$$\vec{u}(\vec{x},t) = e^{i\omega(t-\vec{s}\cdot\vec{x})}\vec{a}$$
(15)

where

- \vec{s} = slowness vector
- \vec{a} = amplitude vector (constant)





Plane Waves in Homogeneous, Isotropic Media

Insert into the Navier-Cauchy equations:

$$\rho \frac{\partial^2}{\partial t^2} \vec{u} = \rho f''(t - sx_1) \vec{a}$$
(20)
= div($\boldsymbol{\sigma}$) = $s^2 f''(t - sx_1) \begin{pmatrix} (\lambda + 2\mu)a_1 \\ \mu a_2 \\ \mu a_3 \end{pmatrix}$ (21)

Can only be satisfied if

•
$$= 0 \text{ and } s = \sqrt{}$$
 (longitudinal polarization)
• $= 0 \text{ and } s = \sqrt{}$ (transverse polarization).

Plane Waves in Homogeneous, Isotropic Media

General case: Navier-Cauchy equations can be satisfied only if either \vec{a} is parallel (or opposite) to \vec{s} or normal to \vec{s} . Transverse wave: \vec{a} is normal to \vec{s} ($\vec{a} \cdot \vec{s} = 0$)

$$|\vec{s}|^2 = \frac{\rho}{\mu}, \quad v_s = \frac{1}{|\vec{s}|} = \sqrt{\frac{\mu}{\rho}}$$
 (22)

Longitudinal wave: \vec{a} is parallel or opposite to \vec{s}

$$|\vec{s}|^2 = \frac{\rho}{\lambda + 2\mu}, \quad v_\rho = \frac{1}{|\vec{s}|} = \sqrt{\frac{\lambda + 2\mu}{\rho}}$$
 (23)

Comparison with Sound Waves in Liquids and Gases

The longitudinal wave is similar to sound waves in liquids and gases, while the transverse wave has no counterpart in liquids and gases.

Seismic Velocities

Medium	Longitudinal wave $\left[\frac{km}{s}\right]$	Transverse wave $\left[\frac{km}{s}\right]$
air	0.34	-
water	1.45	-
wood	about 3	about 1.8
Earth*	5.8–13.7	3.4–7.2

*Parametric Earth Models (PEM), not valid for the shallow subsurface

Seismic Velocities

$$\frac{v_{p}}{v_{s}} = \sqrt{\frac{\lambda + 2\mu}{\mu}} \ge \sqrt{\frac{4}{3}} \approx 1.15$$
(24)

Longitudinal wave always arrives prior to the transverse wave.

Typical v_p - v_s Ratios

• For solid rocks:

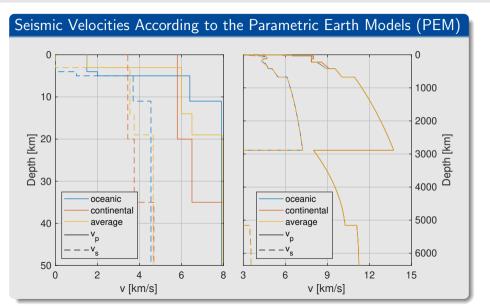
$$\frac{v_p}{v_s} = \sqrt{\frac{\lambda + 2\mu}{\mu}} \approx \sqrt{3} \approx 1.7$$
 (25)

for $\lambda \approx \mu$.

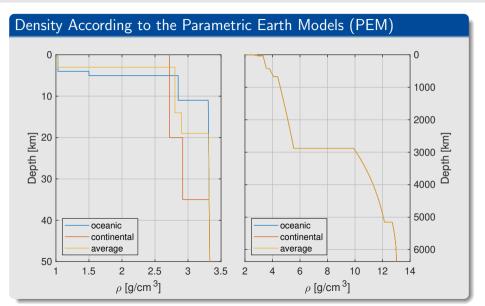
• For soil or unconsolidated rocks:

$$\frac{v_p}{v_s} \approx 2.5$$
 (26)

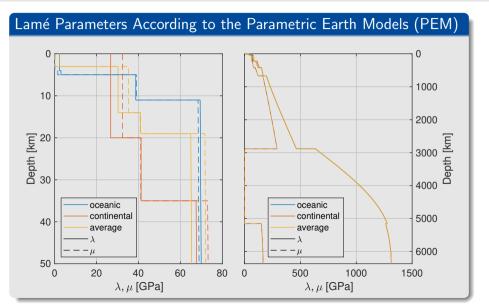
Seismic Body Waves



Seismic Body Waves



Seismic Body Waves



39/131

Typical P-wave Velocities in the Shallow Subsurface

Medium	$v_p \left[\frac{\mathrm{km}}{\mathrm{s}}\right]$	Medium	$v_p \left[\frac{\mathrm{km}}{\mathrm{s}}\right]$
weathering zone	0.1–0.5	clay	1.2–2.8
dry sand	0.3–0.6	claystone	2.2–4.2
water-saturated sand	1.3–1.8	limestone	3–6
sandstone	1.8–4	halite	4.5–6.5
pit coal	1.6-1.9	granite	5–6.5

N.

The Point-Force Solution

- Infinite, homogeneous medium with parameters ρ , λ , and μ (like plane wave consideration).
- Assume that a given force $\vec{F}(t)$ acts at $\vec{x} = \vec{0}$.

Solution of the Navier-Cauchy equations:

$$\vec{u}_{f}(\vec{x},t) = \frac{s_{\rho}^{2}}{4\pi\rho r} \mathbf{P}\vec{F}(t-s_{\rho}r) + \frac{s_{s}^{2}}{4\pi\rho r} (\mathbf{1}-\mathbf{P})\vec{F}(t-s_{s}r) + \frac{1}{4\pi\rho r^{3}} (3\mathbf{P}-\mathbf{1}) \int_{s_{\rho}r}^{s_{s}r} \tau \vec{F}(t-\tau) d\tau$$
(27)

where

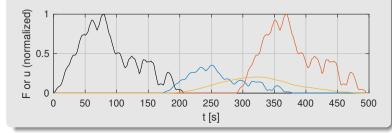
$$r = |\vec{x}|$$

P = projection on the radial direction

The Point-Force Solution

$$\vec{u}_{f}(\vec{x},t) = \frac{s_{\rho}^{2}}{4\pi\rho r}\mathbf{P}\vec{F}(t-s_{\rho}r) + \frac{s_{s}^{2}}{4\pi\rho r}(\mathbf{1}-\mathbf{P})\vec{F}(t-s_{s}r) + \frac{1}{4\pi\rho r^{3}}(3\mathbf{P}-\mathbf{1})\int_{s_{\rho}r}^{s_{s}r}\tau\vec{F}(t-\tau)d\tau$$
(28)

Example:



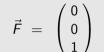
The Point-Force Solution Spatial pattern of the first term, ΡĒ, for $\vec{F} = \begin{pmatrix} 0\\0\\1 \end{pmatrix}$

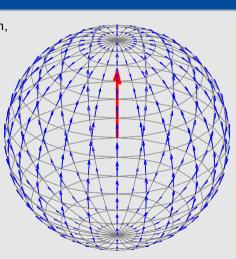
The Point-Force Solution

Spatial pattern of the second term,

 $\left(\mathbf{1}-\mathbf{P}
ight)ec{F}$,

for



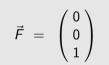


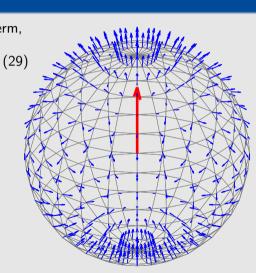
The Point-Force Solution

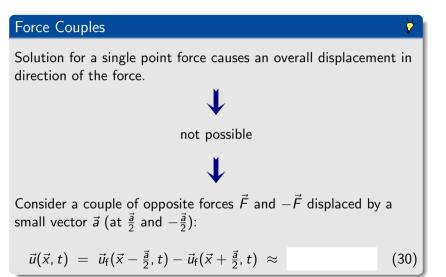
Spatial pattern of the third term,

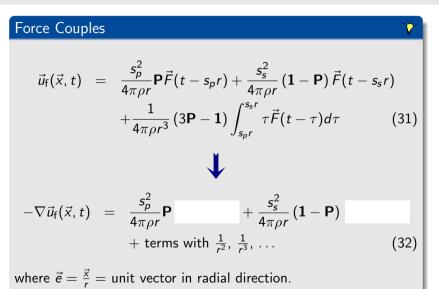
 $(3\mathbf{P}-\mathbf{1})\,ec{F}$,

for

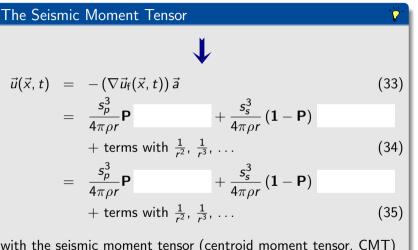






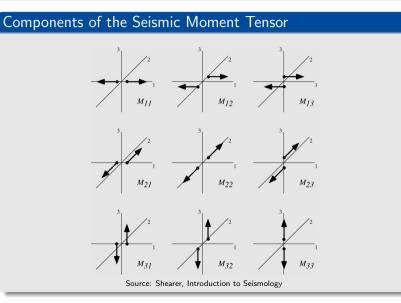


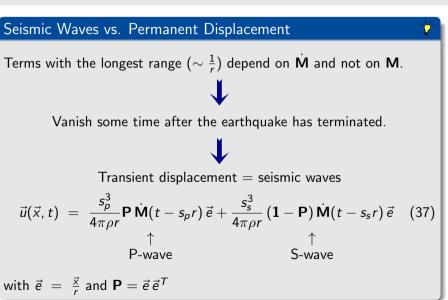
47 / 131

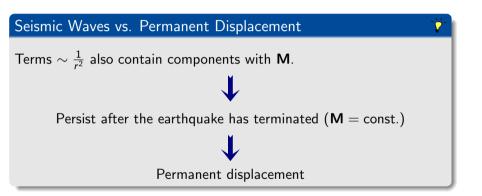


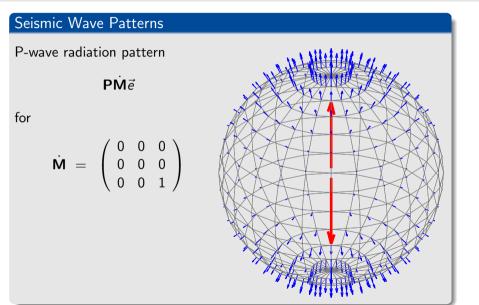
with the seismic moment tensor (centroid moment tensor, CMT)

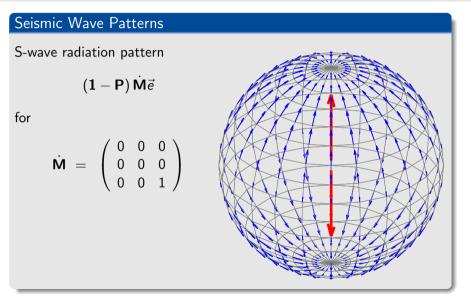
$$\mathbf{M}(t) = \vec{F}(t)\vec{a}^{T} [Nm]$$
(36)

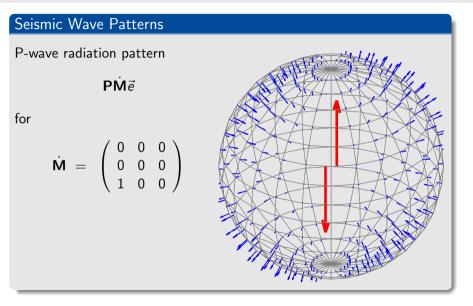


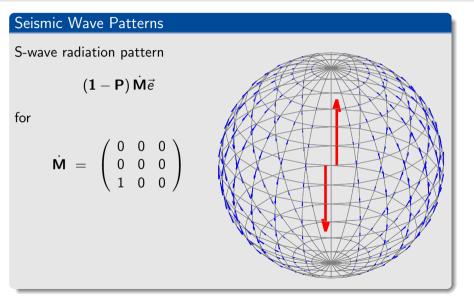


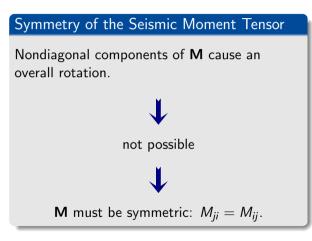


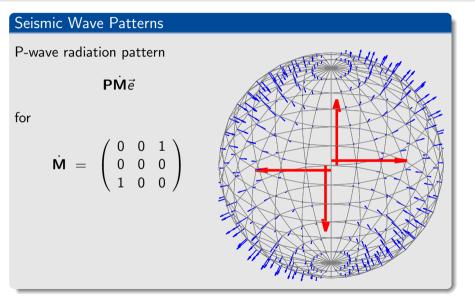


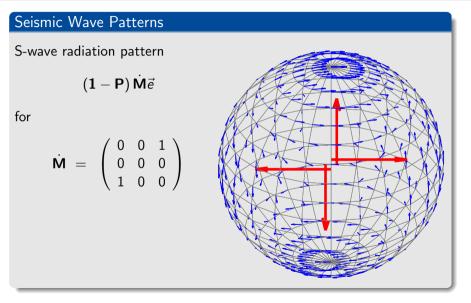


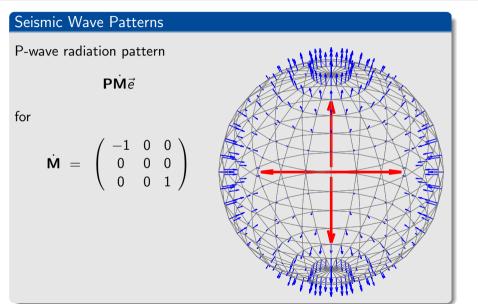


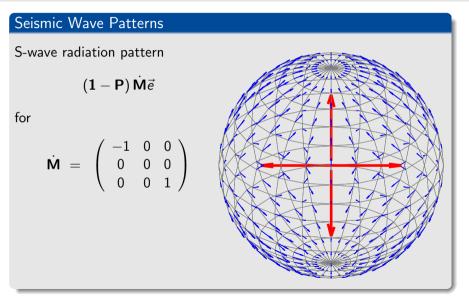












The Scalar Seismic Moment

lf

$$\mathbf{M} = \begin{pmatrix} 0 & 0 & M_0 \\ 0 & 0 & 0 \\ M_0 & 0 & 0 \end{pmatrix} \text{ or } \mathbf{M} = \begin{pmatrix} -M_0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & M_0 \end{pmatrix} (38)$$

(or similar), M_0 is called (scalar) seismic moment.

In general:

$$M_0 = \frac{M_1 - M_3}{2}$$
(39)

where M_1 , M_2 , and M_3 are the eigenvalues of **M** in descending order.

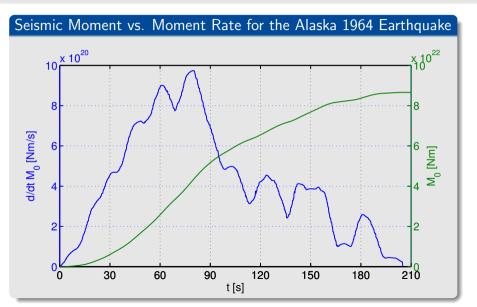
The Scalar Seismic Moment

Alternative interpretation of the seismic moment:

$$M_0 = \mu A \overline{u} \tag{40}$$

where

- $A = \text{size of the rupture area } [m^2]$
- \overline{u} = mean displacement along the rupture area [m]



Amplitudes of Body Waves

P-wave displacement:

$$\vec{u}_{\rho}(\vec{x},t) = \frac{s_{\rho}^{3}}{4\pi\rho r} \mathbf{P} \dot{\mathbf{M}}(t-s_{\rho}r)\vec{e}$$
(41)

Maximum displacement occurs in the directions of the first and third principal axes of $\dot{\mathbf{M}}$:

$$|\vec{u}_p|_{\max} = \frac{s_p^3}{4\pi\rho r} |\dot{M}_0|_{\max}$$
(42)

Amplitudes of Body Waves

S-wave displacement:

$$\vec{u}_{s}(\vec{x},t) = \frac{s_{s}^{3}}{4\pi\rho r} (\mathbf{1} - \mathbf{P}) \dot{\mathbf{M}}(t - s_{s}r) \vec{e}$$
(43)

Maximum displacement occurs in the directions 45° between the first and third principal axis of $\dot{\textbf{M}}$:

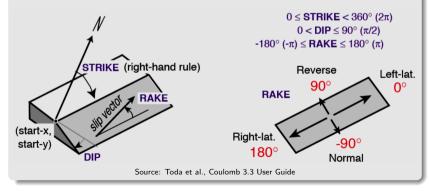
$$|\vec{u}_{s}|_{\max} = \frac{s_{s}^{3}}{4\pi\rho r} |\dot{M}_{0}|_{\max} \qquad (44)$$

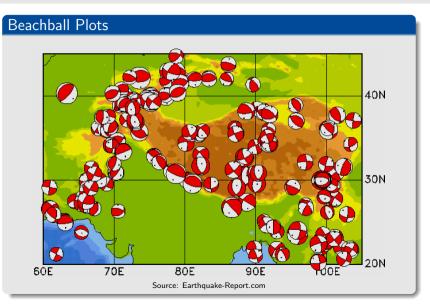
$$\downarrow$$

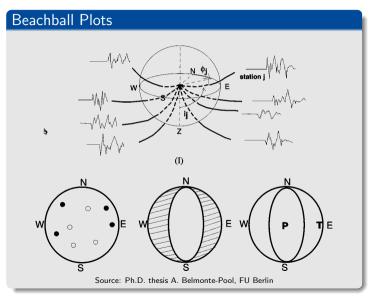
$$\frac{|\vec{u}_{s}|_{\max}}{|\vec{u}_{p}|_{\max}} = \frac{s_{s}^{3}}{s_{p}^{3}} = \left(\frac{v_{p}}{v_{s}}\right)^{3} \approx 5 \qquad (45)$$

Strike, Dip, and Rake of a Double Force Couple

Definition of strike ϕ , dip δ , and rake λ according to Aki and Richards (1980)







Beachball Plots

Basic assumption: $\dot{\mathbf{M}}(t)$ has the same shape as $\mathbf{M}(t)$,

$$\mathbf{M}(t) = f(t) \mathbf{M}, \quad \dot{\mathbf{M}}(t) = \dot{f}(t) \mathbf{M}$$
(46)

where **M** is the total seismic moment, and f(t) increases from 0 to 1.

P-wave arrives with compression dilatation $(\mathbf{M}\vec{e})\cdot\vec{e}>0$ $(\mathbf{M}\vec{e})\cdot\vec{e}<0$

Beachball Plots View from side View from above Auxiliary Surface of Earth Faul Depth Fault FUTURE 'Beach ball" Focal sphere Strike slip Normal (P) Reverse P. Oblique reverse A T. Source: US Geological Survey

Examples of Beachball Plots

- normal fault ($\lambda = -90^\circ$) for different dip angles δ
- ullet reverse fault ($\lambda=90^\circ)$ for different dip angles δ
- transform fault ($\lambda=0^\circ)$ for different dip angles δ
- fault dipping at $\delta=45^\circ$ for different rake angles λ
- fault dipping at $\delta=45^\circ$ for different rake angles λ with additional isotropic expansion

Intensity and Magnitude

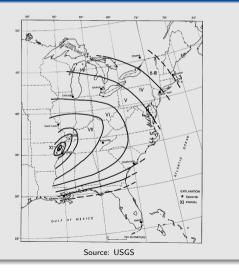
Intensity describes the severity of an earthquake in terms of its effects on the Earth's surface and on humans and their structures.

- Usually written as a Roman numeral.
- Goes back to a 12 level scale (originally 10) from I (not felt) to XII (total destruction) named after G. Mercalli (1850–1914).
- Several extensions / refinements: MCS (Mercalli-Cancani-Sieberg) scale, MWN (Mercalli-Wood-Neumann) scale, MSK scale (Medvedev, Sponheuer & Karnik, 1964), EMS-98 scale (European Macroseismic Scale, 2000).

Magnitude characterizes the size of an earthquake using measured values.

- Usually written as an Arabic numeral with one decimal digit.
- Several different magnitude definitions.
- Logarithmic scale.

Example of an Isoseismal Map of Earthquake Intensity



General Definition of Earthquake Magnitude

If X is any physically measured property of an earthquake, e.g.

- total seismic moment M_0 or
- maximum ground displacement $|\vec{u}|_{max}$,

the corresponding earthquake magnitude is defined by

$$M_X = e \log_{10} \left(\frac{X}{X_0} \right) \tag{47}$$

where

- X_0 = measured value for an earthquake of M_X = 0 under the same conditions
 - e = factor used for making different magnitude definitions consistent (mostly e = 1)

FREIBURG

General Definition of Earthquake Magnitude

If X is a property related to any point different from the earthquake focus, X_0 is a function of distance Δ and depth h (and other properties).

$$M_X = e \log_{10} \left(\frac{X}{X_0(\Delta, h)} \right) = e \log_{10} X + \sigma(\Delta, h)$$
 (48)

with the distance-depth correction function

$$\sigma(\Delta, h) = -e \log_{10} X_0(\Delta, h)$$
(49)

This only makes sense if the distance-depth dependence of X is independent of X itself.

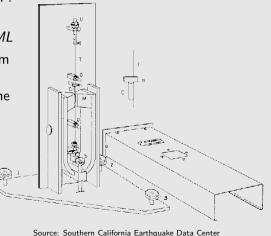
UNI FREBURG

Upper und Lower Limits of Magnitude Scales

- All magnitude scales are from their definition open and both ends.
- Upper limits on Earth are introduced by geological constraints and by the process of wave propagation.
- Negative magnitudes are possible. The definition of zero magnitude is arbitrary and corresponds to what was detectable when the first magnitude definition (C. F. Richter, 1935) was introduced.

The Local Magnitude (Richter Scale)

- Introduced by C. F. Richter in 1935.
- Symbol: M_L or ML
- X is the maximum amplitude A of a specific device, the Wood-Anderson seismometer.



The Wood-Anderson Seismometer

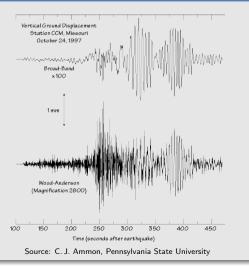
- Oscillation by torsion of a wire
- Electromagnetic damping
- Natural period of $\approx 0.8 \text{ s}$ (frequency $f_0 = 1.25 \text{ Hz}$); close to the natural period of many building structures.

Relevant for earthquake hazard.

• Maximum magnification (record vs. ground displacement) of ≈ 2080 at f_0 ; sometimes a wrong value of 2800 was assumed.

Local magnitudes derived from synthesized seismograms were too high for some time.

The Wood-Anderson Seismometer



The Local Magnitude (Richter Scale)

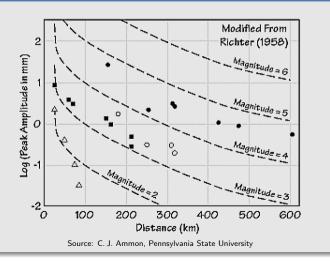
• The local magnitude was originally defined as

$$\mathcal{M}_L = \log_{10} A \tag{50}$$

where the maximum amplitude A of the Wood-Anderson seismometer is measured in $\mu{\rm m}$ at 100 km distance from the epicenter.

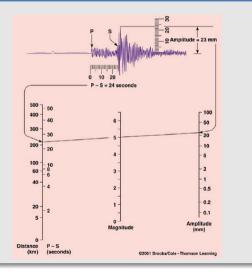
- e = 1 → 1 unit increase in magnitude corresponds to an increase in the instrument's amplitude by a factor 10.
- Originally only a distance correction σ(Δ) = − log₁₀ A₀(Δ) for shallow earthquakes (h ≤ 15 km) in California was provided.

Richter's Original Distance Correction



Intensity and Magnitude

Determining the Local Magnitude of an Earthquake



FREBURG

The Surface-Wave Magnitude

- Symbol: M_S or MS
- Original definition by B. Gutenberg (1945):

$$M_S = \log_{10} u_{h\max} + \sigma(\Delta) \tag{51}$$

where $u_{h\,\text{max}}$ is the maximum horizontal ground displacement at periods from $\mathcal{T}=18\,\text{s}$ to 22 s.

• Widely used modified definition (Moscow-Prague formula, 1962):

$$M_{S} = \max\left\{\log_{10}\frac{|\vec{u}|}{T}\right\} + 1.66\log_{10}\Delta + 3.3$$
 (52)

for $2^\circ \leq \Delta \leq 160^\circ.$ The maximum is taken over all periods of surface waves.

UNI FREBURG

Body-Wave Magnitudes

- Two significantly different definitions
- Symbols: *m*_B, *m*B, *m*_b, *m*b,
- Original definition by B. Gutenberg (1945):

$$m_B = \max\left\{\log_{10}\frac{|\vec{u}|}{T}\right\} + \sigma(\Delta)$$
 (53)

where $|\vec{u}|$ is analyzed for different types of body waves separately (with different functions $\sigma(\Delta)$ at periods from T = 0.5 s to 12 s.

• Alternative definition (*m_b*, *mb*) refers to higher-frequency components of P-waves only.

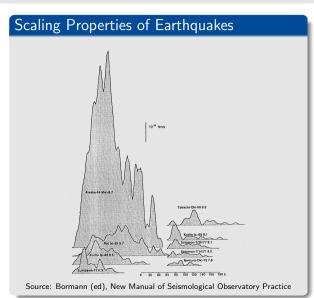
The Moment Magnitude

$$M_W = \frac{2}{3} \log_{10} M_0 - 6.1 \tag{54}$$

with M_0 in Nm

- Introduced in 1977 by H. Kanamori in order to characterize large earthquakes.
- More closely related to the strength of earthquakes at the seismic focus than older magnitude definitions.
- Rather a tectonic than a seismological magnitude scale.

Why is $e = \frac{2}{3}$ here while e = 1 for other magnitude scales?



Scaling Properties of Earthquakes

Alternative interpretation of the seismic moment (Eq. 40):

$$M_0 = \mu A \overline{u} \tag{55}$$

where

- $A = \text{size of the rupture area } [m^2]$
- \overline{u} = mean displacement along the rupture area [m]

Simplest idea for the relation between A, \overline{u} , and M_0 :

$$\overline{u} \sim$$
 and $A \sim$ (56)

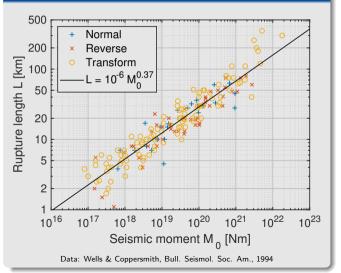
Scaling Properties of Earthquakes

Assume that rupture propagates along the rupture area at a given speed. Duration $\tau \sim L \sim 2000 \sim 1000$ (57)

Wave amplitude

$$|\vec{u}| \sim \dot{M}_0 \sim \frac{M_0}{\tau} \sim \tag{58}$$

Scaling Properties of Earthquakes



The Energy Magnitude

Theoretical relationship for the total energy of all seismic waves suggested by H. Kanamori (1977):

$$E \approx 5 \times 10^{-5} M_0 \tag{59}$$

Corresponding definition of the energy magnitude:

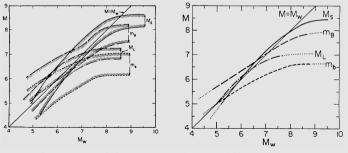
$$M_E = \frac{2}{3} \log_{10} \frac{E}{5 \times 10^{-5}} - 6.1 = \log_{10} E -$$
(60)

Up to one order of magnitude deviation from Kanamori's relationship was found for individual earthquakes.

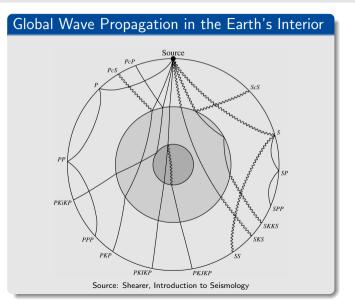
Differences between M_E and M_W up to for individual earthquakes.

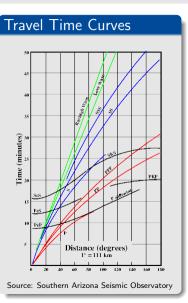
Saturation of Magnitudes

- All magnitudes based on recording seismic waves fall below M_W for large earthquakes.
- Effect is stronger if short-term (high-frequency) components of the seismic waves are used.



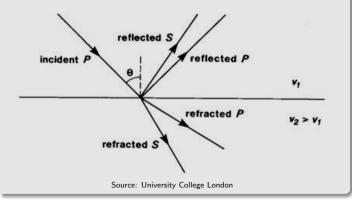
Source: Bormann (ed), New Manual of Seismological Observatory Practice





Reflection and Refraction

Simplest case: two homogeneous, isotropic halfspaces with different properties (λ , μ , ρ) and plane waves in each of them; horizontal interface at $x_3 = 0$.



Reflection and Refraction

Each wave is considered as a plane wave

$$ec{u}(ec{x},t) = f(t-ec{s}\cdotec{x})ec{a}$$

with individual values \vec{s} and \vec{a} where either

$$\vec{a} \parallel \vec{s}$$
 and $|\vec{s}| = s_p = \sqrt{\frac{\rho}{\lambda + 2\mu}}$ (62)

(61)

or

$$\vec{a} \perp \vec{s}$$
 and $|\vec{s}| = s_s = \sqrt{\frac{\rho}{\mu}}$ (63)

Displacement must be continuous at $x_3 = 0$.

 $\tau = t - \vec{s} \cdot \vec{x} = t - s_1 x_1 - s_2 x_2$

(64)

must be the same for all waves at the interface.

Components of \vec{s} parallel to the interface (s_1, s_2) must be the same for all waves.

Horizontal slowness remains constant in reflection and refraction.

Reflection and Refraction

Second condition at the interface:

Stress acting on the interface, given by

$$ec{\sigma}_{\mathsf{int}} = \sigma ert_{x_3=0} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

(65)

must be continuous.

Continuity of displacement and stress at the interface

Linear equation system for the amplitude vectors \vec{a} of the 5 involved waves.

Conversion of Waves in Reflection and Refraction

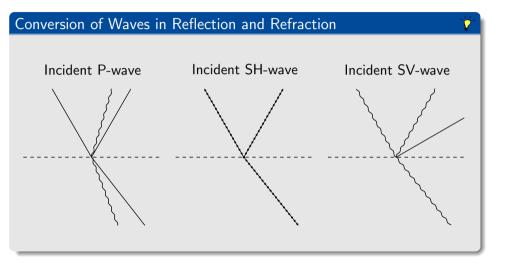
Align the coordinate system in such a way that all waves propagate in the x_1 - x_3 plane ($s_2 = 0$, possible because s_1 and s_2 are the same for all involved waves).

Vertically polarized S-wave (SV-wave):

- a₂ = 0 → particle displacement in the x₁-x₃ plane (and normal to wave propagation)
- Converted to (and from) P and SV waves in reflection and refraction

Horizontally polarized S-wave (SH-wave):

- $a_1 = a_3 = 0 \implies$ particle displacement in x_2 direction
- \bullet Independent of P and SV waves



Ray and Wave Front Approaches

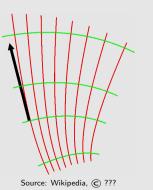
Plane wave approach and spherical wave solutions are only valid in a homogeneous medium.

Generalization:

Wave fronts are no longer planes, but arbitrary surfaces.

Direction of propagation is normal to the wave fronts.

Ray paths are lines following the local direction of propagation (no longer straight lines).



Ray and Wave Front Approaches

Extensions towards the plane wave approach:

Replace

 $ec{u}(ec{x},t) \;=\; f(t-ec{s}\cdotec{x})\,ec{a}$

by

$$\vec{u}(\vec{x},t) = f(t-\psi(\vec{x}))\vec{a}(\vec{x})$$
 (67)

(66)

- Retarded time $\tau = t \psi(\vec{x})$ instead of $\tau = t \vec{s} \cdot \vec{x}$ with a general phase function $\psi(\vec{x})$
- Spatially variable amplitude vector $\vec{a}(\vec{x})$

Ray and Wave Front Approaches

Wave fronts: surfaces where $\psi(\vec{x})$ is constant Direction of propagation: Wave propagates locally in direction of $\nabla \psi(\vec{x})$.

Slowness: $\vec{s}(\vec{x}) = \nabla \psi(\vec{x})$ defines the local slowness vector.

Ray paths: lines following the direction of $\vec{s} = \nabla \psi$

Limitation: Only valid in the limit of high frequencies.

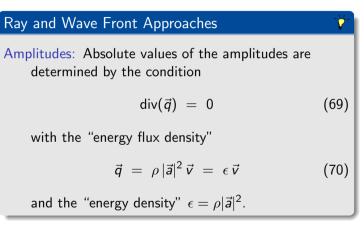
Ray and Wave Front Approaches

Main results:

Types of waves: two independent types of waves (P-wave and S-wave); amplitude vector \vec{a} is either parallel or normal to $\vec{s} = \nabla \psi$ at each point; no reflection; no merging of both wave types

Slowness/speed: same relationship as for plane and spherical waves (eikonal equation)

$$|\vec{s}|^2 = |\nabla\psi|^2 = \frac{\rho}{\lambda + 2\mu}$$
 or $|\vec{s}|^2 = |\nabla\psi|^2 = \frac{\rho}{\mu}$ (68)

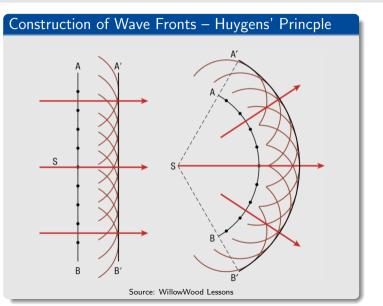


Geometrical and Numerical Approaches

Numerical solution of the eikonal equation: one-sided difference quotients for $\psi(\vec{x})$ from the considered points to neighbors where ψ is already known; similar to upstream scheme.

Huygens' princple: Construct wave fronts (planes where $\psi(\vec{x})$ is constant) progressively for increasing values of ψ ; rather a geometrical approach than a numerical method.

Ray tracing: Compute individual rays (lines in direction of $\nabla \psi(\vec{x})$).



Construction of Ray Paths

- \vec{s} changes along the ray path in direction of increasing slowness (decreasing velocity).
- Horizontal slowness remains constant.

Source: Shearer, Introduction to Seismology

Horizontal direction in seismology = planes where the properties of the material are constant.

Interface Waves and Surface Waves

The Waves Disappearing in Reflection and Refraction

For all waves involved in refection and refraction at a planar interface ($s_2 = 0$): s_1 given and

$$|\vec{s}|^{2} = s_{1}^{2} + s_{3}^{2} = \begin{cases} \frac{1}{v_{\rho}^{2}} = \frac{\rho}{\lambda + 2\mu} & \text{for } \frac{P \text{-waves}}{S \text{-waves}} \end{cases}$$
(71)
wen.
Vaves cannot propagate if $s_{1} > |\vec{s}|$, but
 $s_{3} = \pm \sqrt{|\vec{s}|^{2} - s_{1}^{2}} = \pm \sqrt{} \sqrt{} \qquad (72)$

would be a formal solution.

gi

Harmonic Interface Waves

For a harmonic wave:

$$\vec{u}(\vec{x},t) = e^{i\omega(t-\vec{s}\cdot\vec{x})}\vec{a} = e^{i\omega\left(t-s_{1}x_{1}\mp i\sqrt{s_{1}^{2}-|\vec{s}|^{2}}x_{3}\right)}\vec{a} \quad (73)$$
$$= e^{i\omega(t-s_{1}x_{1})}e^{\pm x_{3}}\vec{a} \quad (74)$$

Can be considered as a wave propagating along the interface (here in x_1 direction) with an amplitude depending on x_3 :

$$\vec{u}(\vec{x},t) = e^{i\omega(t-s_1x_1)} \vec{a}_{\text{eff}}$$
(75)

with the effective amplitude

$$\vec{a}_{\rm eff} = e^{\pm x_3} \vec{a}$$
(76)

FREIBURG

The Depth of Penetration of Interface Waves

$$\vec{a}_{\rm eff} = e^{\pm}$$
 $x_3 \vec{a} = e^{\pm \frac{x_3}{d}} \vec{a}$ (77)

with the depth of penetration

$$d = \frac{1}{2\pi\sqrt{2}} = \frac{L}{2\pi\sqrt{2}}$$
(78)

and the wavelength $L = \frac{2\pi}{\omega s_1}$.

- $d \rightarrow$ if the wave is only slightly too slow for the medium $(s_1 \rightarrow |\vec{s}|)$.
- $d \rightarrow$ if the wave is much too slow for the medium $(s_1 \gg |\vec{s}|)$.

UNI

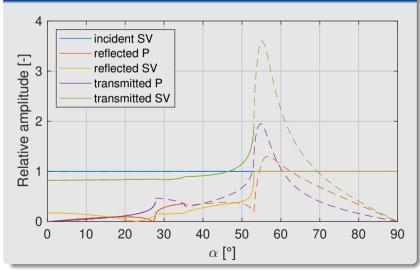
Particle Orbits of P and SV Interface Waves

Examples of particle orbits for an incident SV wave at the crust-mantle boundary: $\alpha = 20^{\circ}$, $\alpha = 30^{\circ}$, $\alpha = 40^{\circ}$, $\alpha = 70^{\circ}$

General properties:

- Particles move on elliptical orbits.
- Horizontal ellipses for P interface waves, vertical ellipses for S interface waves.
- Aspect ratio of the ellipses $=\frac{1}{\sqrt{1-\frac{|\vec{s}|^2}{c^2}}}$.
- Prograde rotation in the lower halfspace; retrograde rotation in the upper halfspace.

Amplitudes at the Crust-Mantle Boundary



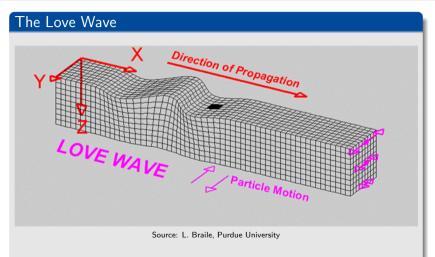
Surface Waves at a Free Surface

Interface waves: driven by plane waves (incident, reflected, refracted)

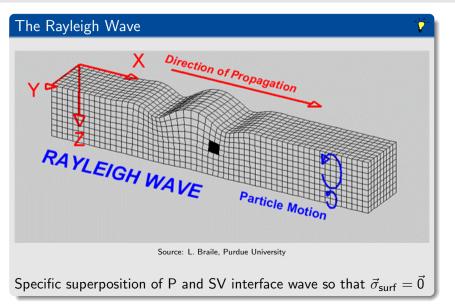
Surface waves: living on their own at a free surface (interface to air); $\vec{\sigma}_{\rm surf} = \vec{0}$

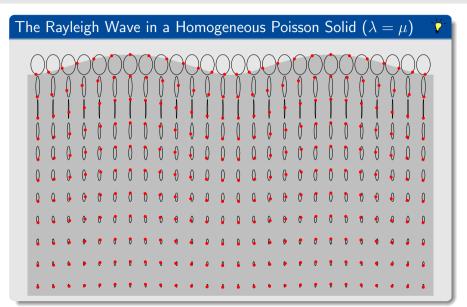
Two fundamental types of surface waves in a semi-infinite halfspace:

```
Rayleigh wave, named after J. W. Strutt (later 3. Lord Rayleigh) Love wave, named after A. E. H. Love
```

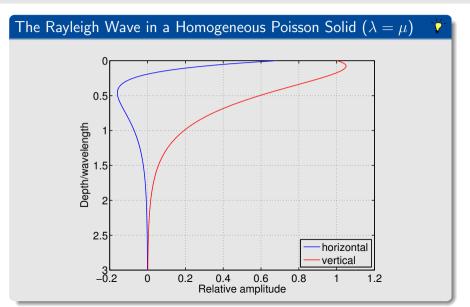
The same as SH interface wave; not possible in a homogeneous halfspace because $\vec{\sigma}_{surf} \neq \vec{0}$ for $a_2 \neq 0$.

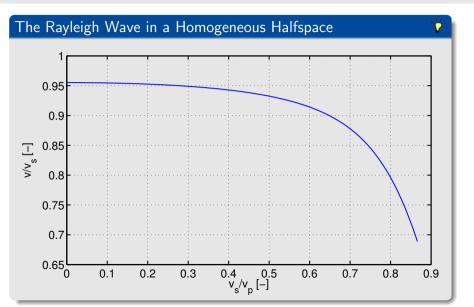




The Rayleigh Wave in a Homogeneous Poisson Solid $(\lambda=\mu)$.

- Retrograde particle motion on elliptical orbits at the surface.
- Prograde particle motion on elliptical orbits at greater depth.
- Velocity $v \approx 0.92 v_s$.





Main Differences Between Body Waves and Surface Waves

• Decrease with the distance from the hypocenter/epicenter *r*:

	Energy flux density	Amplitude
body waves	$\propto rac{1}{r^2}$	$\propto rac{1}{r}$
surface waves	$\propto \frac{1}{r}$	$\propto rac{1}{\sqrt{r}}$

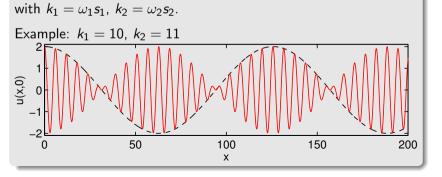
Surface waves have a longer range than body waves.

• Velocity of harmonic surface waves depends on the wavelength (dispersion).

Dispersion

Simplest situation: superposition of two harmonic waves with the same amplitude (= 1), but different frequencies in 1D:

$$u(x,t) = e^{i\omega_1(t-s_1x)} + e^{i\omega_2(t-s_2x)} = e^{i(\omega_1t-k_1x)} + e^{i(\omega_2t-k_2x)}$$
(79)



Dispersion

$$u(x,t) = e^{i\omega_{1}(t-s_{1}x)} + e^{i\omega_{2}(t-s_{2}x)} = e^{i(\omega_{1}t-k_{1}x)} + e^{i(\omega_{2}t-k_{1}x)} (80)$$

$$= e^{i\left(\overline{\omega}t + \frac{\omega_{1}-\omega_{2}}{2}t - \overline{k}x - \frac{k_{1}-k_{2}}{2}x\right)} + e^{i\left(\overline{\omega}t - \frac{\omega_{1}-\omega_{2}}{2}t - \overline{k}x + \frac{k_{1}-k_{2}}{2}x\right)} (81)$$

$$= e^{i\left(\overline{\omega}t - \overline{k}x\right)} \left(e^{i\left(\frac{\omega_{1}-\omega_{2}}{2}t - \frac{k_{1}-k_{2}}{2}x\right)} + e^{i\left(-\frac{\omega_{1}-\omega_{2}}{2}t + \frac{k_{1}-k_{2}}{2}x\right)} (83)\right)$$

$$= e^{i\left(\overline{\omega}t - \overline{k}x\right)} 2\cos\left(\frac{\omega_{1}-\omega_{2}}{2}t - \frac{k_{1}-k_{2}}{2}x\right)$$
(83)
$$= e^{i\overline{\omega}\left(t - \frac{\overline{k}}{\overline{\omega}}x\right)} 2\cos\left(\frac{\omega_{1}-\omega_{2}}{2}\left(t - \frac{k_{1}-k_{2}}{\omega_{1}-\omega_{2}}x\right)\right)$$
(84)
with $\overline{\omega} = \frac{\omega_{1}+\omega_{2}}{2}, \overline{k} = \frac{k_{1}+k_{2}}{2}.$

FREBURG

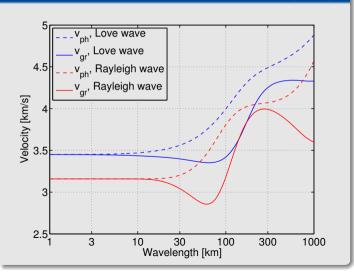
Dispersion

For $\omega_1 \approx \omega_2$, $k_1 \approx k_2$:

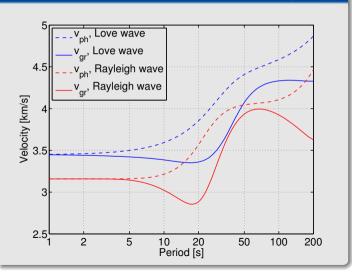
- High-frequency oscillation with an angular frequency $\overline{\omega}$ propagating with the phase slowness $s_{\rm ph} = \frac{\overline{k}}{\overline{\omega}}$
- Low-frequency oscillation of the amplitude with an angular frequency $\frac{\omega_1-\omega_2}{2}$ propagating with the group slowness

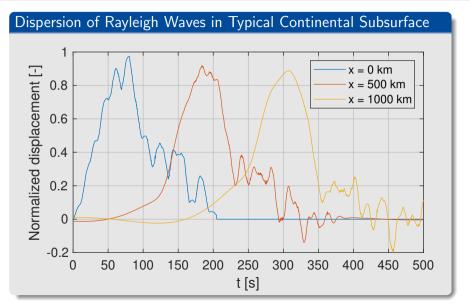
$$s_{
m gr} = rac{k_1 - k_2}{\omega_1 - \omega_2}
ightarrow rac{dk}{d\omega}$$
 for $\omega_1 - \omega_2
ightarrow 0$ (85)

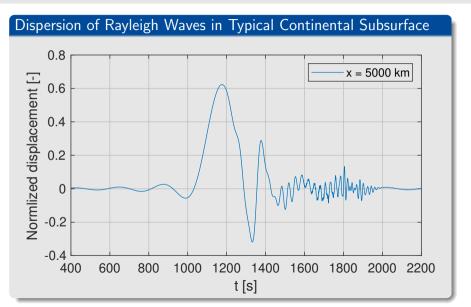
Velocities in Typical Continental Subsurface (PEM)

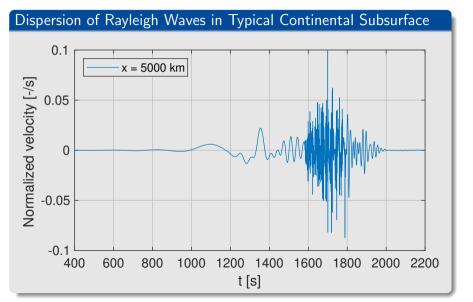


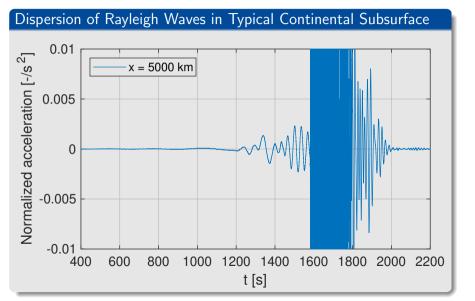
Velocities in Typical Continental Subsurface (PEM)

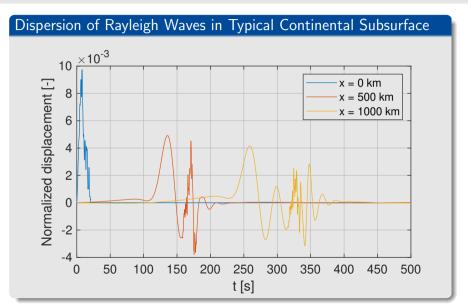


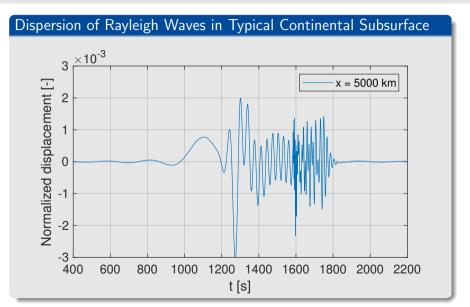












131 / 131