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Introduction

Main Properties of Tsunamis

Gravity waves with periods between ≈ 100 s and 10,000 s

Propagate at high velocities in deep water

Mainly horizontal particle motion of the entire water column
down to the ocean floor

Rather small dissipation of energy

Travel over large distances

Wave height increases with decreasing ocean depth

Large wave heights at the coast
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Introduction

Basic Terms

Source: Levin & Nosov, Physics of Tsunamis
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Introduction

Main Sources of Tsunamis

Earthquakes (more than 90 % of all tsunamis)

Landslides

Volcanic eruptions

Meteorite impact (rare)
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Introduction

Known Tsunami Sources from 2000 B.C. to 2014

Source: Levin & Nosov, Physics of Tsunamis
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Introduction

The Tallest Tsunami Known so far: Lituya Bay, 1958

Source: Pararas-Carayannis, The Mega-Tsunami of July 9, 1958 in Lituya Bay, Alaska
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Introduction

The Tallest Tsunamis 2000–2014

Date Location MW Hmax [m] Death toll

11.03.2011 Japan 9.0 56 18,482

24.12.2004 Indonesia, Sumatra 9.1 51 227,899

27.02.2010 Chile 8.8 29 156

29.09.2009 Samoa 8.1 22 192

15.11.2006 Russia, Kuril Islands 8.3 22 0

17.07.2006 Indonesia, South of Java 7.7 21 802

25.10.2010 Indonesia, Sumatra 7.8 17 431
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Intensity and Magnitude

Types of Intensity and Magnitude Scales

Type Adressed property Examples

effect on humans and Sieberg-Ambraseys scale

infrastructure Papadopoulos-Imamura scale
intensity

Imamura-Iida scale
wave height at the coast

Soloviev-Imamura scale

strength at the source Abe-Hatori scale
magnitude

of the tsunami Murty-Loomis scale
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Intensity and Magnitude

The Sieberg-Ambraseys Scale

Originally introduced by A. H. Sieberg (1927)

Modified by N. N. Ambraseys (1962)

Six-point scale from 1 = very light to 6 = disastrous

The Papadopoulos-Imamura Scale

Introduced by G. A. Papadopoulos and F. Imamura (2001)

12-point scale similar to the Mercalli scale for earthquakes
from I = not felt to XII = destructive
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Intensity and Magnitude

The Imamura-Iida Scale

Introduced by A. Imamura (1942); modified by K. Iida (1956)

Defined as

m = log2 Hmax (1)

Source: Gusiakov, Tsunami Quantification

Originally termed magnitude
11 / 42

http://research.jisao.washington.edu/tsunamicommission/workshop2007/gusiakov.pdf


Intensity and Magnitude

The Soloviev-Imamura Scale

Modification of the Imamura-Iida scale by S. Soloviev (1972)

Defined as

I = 1
2 + log2 Hav (2)

Source: Gusiakov, Tsunami Quantification

Widely used in tsunami catalogs
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Intensity and Magnitude

The Soloviev-Imamura Scale

Source: Levin & Nosov, Physics of Tsunamis
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Intensity and Magnitude

The Soloviev-Imamura Scale

Source: Gusiakov, Pure Appl. Geophys., 2015
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Intensity and Magnitude

The Abe-Hatori Scale

Introduced in 1979 by K. Abe

First attempt to define a tsunami magnitude taking into
account the distance from the source:

Mt = a log10 Hmax + b log10 ∆ + D (3)

where

Hmax = maximum wave amplitude at the coast

∆ = distance

a, b,D = constants
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Intensity and Magnitude

The Murty-Loomis Scale

Introduced in 1980 by T. S. Murty and H. G. Loomis.

Based on the total potential energy E (in J here,
originally in ergs):

ML = 2 (log10 E − 12) (4)

Well-defined and theoretically a good measure of the
strength of a tsunami, but suffers from the problem of
determining the total potential energy.
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Theory of Ocean Waves Without Fluid Dynamics

Starting Point

Elastic medium with µ = 0:

σ = λ εv 1 = − p 1 (5)

where

p = − λ εv = − λ div(~u) (6)

is called pressure.

Mechanically equivalent to a compressible, inviscid fluid.

Theory is only valid for small displacement.

Kinematically not appropriate for describing fluids in
general, but for waves with small amplitudes.
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Theory of Ocean Waves Without Fluid Dynamics

Types of Waves in Fluids

P body waves: sound wave; slowness

s =
1

vp
=

√
ρ

λ
(7)

P interface waves:

Prograde particle movement on horizontal elliptical orbits
Amplitude decreases with depth; depth of penetration

d =
1

ω
√
s2

1 − |~s|2
=

L

2π

√
1− |~s|

2

s2
1

(8)

with L = 2π
ωs1
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Theory of Ocean Waves Without Fluid Dynamics

P Interface Waves in Fluids

Particle displacement:

~u(~x , t) = e iω(t−~s·~x)~a (9)

= e iω(t−s1x1) e±
x3
d ~a (10)

with

u3(~x , t)

u1(~x , t)
=

a3

a1
=

s3

s1
(11)

= ±i

√
1− |

~s|2
s2

1

= ± i

ωs1d
(12)

where only the + sign makes sense in the lower halfspace
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Theory of Ocean Waves Without Fluid Dynamics

P Interface Waves in Fluids

Pressure:

p(~x , t) = − λ div(~u(~x , t)) = e iω(t−~s·~x) (13)

From Eq. 12:

~s ·~a = s1a1 + s3a3 = s1a1

(
1 +

s3

s1

a3

a1

)
(14)

=
a1|~s|2

s1
= a1

ρ

λs1
= ± a3

ρωd

iλ
(15)

p(~x , t) = ± e iω(t−~s·~x) = ± u3(~x , t) (16)
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Theory of Ocean Waves Without Fluid Dynamics

P Surface Waves in Fluids

No surface with p(~x , t) = 0 (or constant) at any time

P interface wave cannot be a surface wave.

P Surface Waves in Fluids With Gravity

Gravity causes additional hydrostatic pressure

phy(~x , t) = − ρg(x3 + u3(~x , t)) (17)

p(~x , t) = ± ρω2d u3(~x , t)− ρg(x3 + u3(~x , t)) (18)
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Ocean Waves at Infinite Ocean Depth

P Surface Waves in Fluids With Gravity

Free surface at x3 = 0 (p(x1, x2, 0, t) = 0) is possible if

ω2 =
g

d
= ωg

√
s2

1 − |~s|2 (19)

The Velocity of Propagation

Slowness:

s2
1 = |~s|2 +

(
ω

g

)2

(20)

Expressed in terms of the wavelength L = 2π
ωs1

:

s2
1 =

|~s|2

2
+

√(
|~s|2
2

)2

+

(
2π

gL

)2

(21)
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Ocean Waves at Infinite Ocean Depth

Velocity of Propagation
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Ocean Waves at Finite Ocean Depth

Boundary Condition at the Ocean Floor

Consider domain −H ≤ x3 ≤ 0 with a given ocean depth H.

Solution must meet the condition u3(x1, x2,−H, t) = 0.

Superposition of the solutions with + and − signs

u3(~x , t) =
(
a3 e

iω(t−s1x1) e
x3
d

)
+

(
a3 e

iω(t−s1x1) e−
x3
d

)
(22)

= a3 e
iω(t−s1x1)

( )
(23)

= 2a3 e
iω(t−s1x1)

(
x3 + H

d

)
(24)

satisfies the boundary condition at x3 = −H.
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http://hergarten.at/extra/orbitsow.pdf


Ocean Waves at Finite Ocean Depth

The Hyperbolic Cosine, Sine and Tangent Functions

cosh(x) =
ex + e−x

2
(25)

sinh(x) =
ex − e−x

2
(26)

tanh(x) =
sinh(x)

cosh(x)
(27)

=
ex − e−x

ex + e−x
(28)

−2 −1 0 1 2
−3

−2

−1

0

1

2

3

4

x

f(
x
)

 

 

f(x) = e
x

f(x) = e
−x

f(x) = cosh(x)

f(x) = sinh(x)

f(x) = tanh(x)
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Ocean Waves at Finite Ocean Depth

Vertical Particle Displacement

Wave height

h = u3(~0, 0) = 2a3 sinh

(
H

d

)
(29)

u3(~x , t) = h e iω(t−s1x1)
sinh

(
x3+H
d

)
sinh

(
H
d

) (30)
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Ocean Waves at Finite Ocean Depth

Particle Orbits for L/H = 1 (incompressible)
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http://hergarten.at/extra/airydeepwater.pdf


Ocean Waves at Finite Ocean Depth

Particle Orbits for L/H = 5 (incompressible)
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http://hergarten.at/extra/airyintermediate.pdf


Ocean Waves at Finite Ocean Depth

Particle Orbits for L/H = 20 (incompressible)
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http://hergarten.at/extra/airyshallowwater.pdf


Ocean Waves at Finite Ocean Depth

The Velocity of Propagation

Pressure (Eq. 18) for the superposed solution (Eq. 24):

p(~x , t) = ρω2d
(
a3 e

iω(t−s1x1)
(
e

x3+H
d + e−

x3+H
d

))
−ρg

(
x3 +

(
a3 e

iω(t−s1x1)
(
e

x3+H
d − e−

x3+H
d

)))
(31)

= 2a3ρ e
iω(t−s1x1)

(
ω2d cosh

(
x3+H
d

)
− g sinh

(
x3+H
d

))
−ρg x3 (32)

Free surface at x3 = 0 (p(x1, x2, 0, t) = 0) is possible if

ω2 =
g

d
tanh

(
H
d

)
= ωg

√
s2

1 − |~s|2 tanh
(
H
d

)
(33)
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Ocean Waves at Finite Ocean Depth

The Velocity of Propagation

Generalization of Eq. 21:

s2
1 =

|~s|2

2
+

√√√√( |~s|2
2

)2

+

(
2π

gL tanh
(
H
d

))2

(34)

For incompressible fluids (|~s| = 0, d = L
2π ):

s2
1 =

2π

gL tanh
(

2πH
L

) (35)

v =

√
gL

2π
tanh

(
2πH

L

)
(36)
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Ocean Waves at Finite Ocean Depth

The Velocity of Propagation
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Ocean Waves at Finite Ocean Depth

Regimes of Ocean Wave Propagation

Deep water regime: d
H ≤

1
π ⇔

L
H ≤ 2

Particles move on almost circular orbits.

Particle movement is practically limited to a depth less than
one wavelength.

Horizontal particle displacement at the ocean floor is less
than 10 % of the displacement at the surface.

Velocity depends on the wavelength, but not on ocean depth:

v ≈
√

gL

2π
, (37)

Strong dispersion
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Ocean Waves at Finite Ocean Depth

Regimes of Ocean Wave Propagation

Shallow water regime: d
H ≥

10
π ⇔

L
H ≥ 20

Particles move on elliptical orbits.

Horizontal particle movement persists down to the ocean
floor; at the ocean floor more than 95 % of the displacement
at the surface.

Velocity only depends on ocean depth:

v ≈
√
gH

No dispersion
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Ocean Waves at Finite Ocean Depth

Dispersion

Examples of tsunami wave dispersion in a 4000 m deep ocean
(symmetric propagation to the left and to the right):

bell-shaped (Gaussian) wave

boxcar-shaped wave

double boxcar-shaped wave

step-like wave
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http://hergarten.at/extra/airydispersion1.pdf
http://hergarten.at/extra/airydispersion2.pdf
http://hergarten.at/extra/airydispersion3.pdf
http://hergarten.at/extra/airydispersion4.pdf


Ocean Waves at Finite Ocean Depth

The Fluid Pressure

Variation in fluid pressure without hydrostatic pressure from
Eqs. 32, 29, and 33:

p(~x , t) = 2a3ρ e
iω(t−s1x1) ω2d cosh

(
x3+H
d

)
(38)

=
h

sinh
(
H
d

)ρ e iω(t−s1x1) g

d
tanh

(
H
d

)
d cosh

(
x3+H
d

)
(39)

= ρgh e iω(t−s1x1)
cosh

(
x3+H
d

)
cosh

(
H
d

) (40)
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Ocean Waves at Finite Ocean Depth

The Fluid Pressure
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Ocean Waves at Finite Ocean Depth

Variation in Pressure at the Ocean Floor
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Ocean Waves at Finite Ocean Depth

Variation in Pressure at the Ocean Floor

Deep water regime ( L
H ≤ 2): < 10 % of the near-surface variation at the ocean floor.

Shallow water regime ( L
H ≥ 20): > 95 % of the near-surface variation at the ocean floor.

Most important component of tsunami warning systems beyond earthquake registration.

39 / 42



Wave Propagation at Non-Constant Ocean Depth

Wave Shoaling

Source: Carpenter, Ocean Waves
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http://slideplayer.com/slide/7778663/


Wave Propagation at Non-Constant Ocean Depth

Ray Theory

Extensions towards the harmonic plane wave approach:

Retarded time τ = t − ψ(x1, x2) instead of τ = t − s1x1 with a general phase function
ψ(x1, x2)

Propagation in direction of ∇ψ(x1, x2) with local slowness |∇ψ(x1, x2)|
Spatially variable wave height h(x1, x2)

Vertical particle displacement in analogy to Eq. 30,

u3(~x , t) = h e iω(t−ψ(x1,x2))
sinh

(
x3+H
d

)
sinh

(
H
d

) (41)

so that u3 = 0 at the ocean floor.
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Wave Propagation at Non-Constant Ocean Depth

Ray Theory

Calculations in analogy the eikonal equation for seismic waves.

Terms ∼ ω2:

Horizontal particle displacement only in direction of propagation
Velocity of propagation according to Eq. 36

Terms ∼ ω:

div(~q) = 0 (42)

with the energy flux density

~q =
1

2
ρg h2 ~v (43)
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