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Mass Movements as a Geohazard

Worldwide Death Toll Since 1970
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Classification of Mass Movements According to Varnes

Classification by the Type of Movement

Modified from: Shanmugam & Wang, Journal of Palaeogeography, 2015, doi 10.3724/SP.J.1261.2015.00071
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https://doi.org/10.3724/SP.J.1261.2015.00071


Classification of Mass Movements According to Varnes

Classification by the Material

Rock: Hard or firm mass that was intact and in its natural place
before the initiation of movement.

Soil: An aggregate of solid particles, generally of minerals and
rocks, that either was transported or was formed by the
weathering of rock in place. Gases or liquids filling the pores
of the soil form part of the soil.

Earth: Material in which 80 % or more of the particles are smaller
than 2 mm, the upper limit of sand sized particles.

Mud: Material in which 80 % or more of the particles are smaller
than 0.06 mm, the upper limit of silt sized particles.

Debris: Contains a significant proportion of coarse material; 20 %
to 80 % of the particles are larger than 2 mm.
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Examples From the Alps

Rockslide at Randa (Matter Valley, Switzerland, 1991, V ≈ 30 milion m3)

Source: Wikipedia Photo: S. Hergarten
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https://en.wikipedia.org/wiki/Randa_rockslides


Examples From the Alps

Flims Rockslide (≈ 9150 b.p., V ≥ 8 km3)

Photo: K. Stüwe & R. Homberger (www.alpengeologie.org)
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http://www.alpengeologie.org


Regional Examples

Wutach Gorge, Black Forest (2017)

Photo: M. Geyer (www.geotourist-freiburg.de)

8 / 43

http://www.geotourist-freiburg.de


Regional Examples

Freiburg, Main Railway Track (2016)

Photo: T. Kunz (Badische Zeitung)
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https://www.badische-zeitung.de/freiburg/bahnarbeiten-werden-immer-mehr-zur-dauerbaustelle--122570459.html


Regional Examples

Menzenschwand, Black Forest

Source: Büschelberger et al., Earth Surf. Process. Landforms, 2022, doi 10.1002/esp.5237 10 / 43

https://doi.org/10.1002/esp.5237


Fahrboeschung and Talweg

The Fahrboeschung Concept

Dates back to Albert Heim (1932).

Mostly applied to rockfalls and rock avalanches, but
also to mud flows and debris flows.

Ratio of fall height δH and runout length L.

Source: de Graaf & Bowman, 12th International Symposium on Landslides, 2016
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https://www.researchgate.net/publication/305057191_Influences_of_strain_rate_and_shear_rate_on_the_propagation_of_large_scale_rock_avalanches


Fahrboeschung and Talweg

Dependence of the Fahrboeschung on Volume

Source: Basharat & Rohn, Nat. Hazards, 2015, doi 10.1007/s11069-015-1590-4
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https://link.springer.com/article/10.1007/s11069-015-1590-4


Fahrboeschung and Talweg

Physical Interpretation of the Fahrboeschung

Consider a particle moving on a 1D topography
H(x) with a given coefficient of kinetic (dynamic,
sliding) friction ξ, starting from x = 0 at t = 0.

Friction force:

Ff = ξmg β

if dynamic effects are neglected with the slope angle
β according to

tanβ = − ∂H

∂x
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Fahrboeschung and Talweg

Physical Interpretation of the Fahrboeschung

Energy consumed by friction:

Ef =

∫
Ff dt = ξmg

∫
β dt = ξmg x

Energy balance:

mg H(x) + + Ef = const =

=

√ (
− −

)
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Fahrboeschung and Talweg

Definition and Mathematical Description of the Talweg

Consider a given topography H(x1, x2). The talweg (also
thalweg) is the line (from a given point) following the
direction of the steepest descent.

The talweg line ~s(t) =
(
s1(t)
s2(t)

)
(in map view) can be

described by the ordinary differential equation

d

dt
~s(t) ∼ H(~s(t))

where t is the curve parameter (not necessarily time).
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Fahrboeschung and Talweg

Definition and Mathematical Description of the Talweg

The factor of proportionality does not affect the talweg line,
but only the meaning of t; any positive (not necessarily
constant) value can be used.

Convenient choice:

d

dt
~s(t) = −

H(~s(t))

H(~s(t))
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Lumped-Mass Models

Description of a Particle Moving Along the Surface

Variables:

~s(t) =

(
s1(t)
s2(t)
s3(t)

)
, ~v(t) =

(
v1(t)
v2(t)
v3(t)

)
Constraints:

s3(t) = H(s1(t), s2(t))

v3(t) =

(
v1(t)
v2(t)

)
·

~v · ~n = 0 with ~n =
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Lumped-Mass Models

Acceleration

Total acceleration acting on a particle at the surface:

d~v

dt
= ~a = ~g +~an +~af = ~g + an~n − ξan~e

where

~g =

(
0
0
−g

)

~n =
1

(
−∇H
1

)

~e =
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Lumped-Mass Models

Simplified 2-D Model

Approximation: |∇H| � 1

~v ≈

(
v1

v2

0

)
and ~n ≈

(
−∇H
1

)

d

dt

(
v1

v2

0

)
= ~g + an~n − ξan~e =




an =
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Lumped-Mass Models

3D Lumped-Mass Model

Differential equations:

d

dt
~s = ~v

d

dt
~v = ~g + an~n − ξan~e

Explicit Euler scheme (t → t + δt):

~s = ~s + δt ~v

~v = ~v + δt (~g + an~n − ξan~e)

Where are the problems?
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Lumped-Mass Models

3D Lumped-Mass Model

Modification 1:

1 ~s = ~s + δt ~v as in explicit Euler
scheme.

2 Set s3 = H(s1, s2).

3 Assume that δt = |~s−~s|
|~v | instead

of the original δt for the rest of
this time step.

Modification 2: mixed scheme for ~v

~v = ~v + δt (~g + an~n − ξan~e)
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Yield Criteria

Basic Structure

Define yield point as a function of the
components of σ. Material behaves elastically
as long as

f (σ) < fyield.

Brittle failure or plastic deformation if

f (σ) = fyield.
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Yield Criteria

Types of Yield Criteria

Anisotropic criteria predict threshold and plane of failure;
mostly used for brittle materials

Criterion Properties of σ

Tresca maximum shear stress

Mohr-Coulomb shear stress and normal stress

Isotropic criteria predict only the threshold of failure;
mostly used for ductile materials

Criterion Properties of σ

von Mises von-Mises stress

Drucker-Prager von-Mises stress and mean stress
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Yield Criteria

The Mohr-Coulomb Criterion

Compressive normal stresses increase the strength
against shear failure:

σcrit
s = ∓ξ σn + C

with

ξ = coefficient of internal friction = tanφ

φ = angle of internal friction

C = cohesion

First term is formally the same as solid-state friction.
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Yield Criteria

The Mohr-Coulomb Criterion

Typical parameter values:

C φ

surface rocks 10 MPa 30–50◦

soils 0–100 kPa 20–40◦

sand 0 27–45◦

snow 0–500 Pa 15–30◦
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http://www.geotechdata.info/parameter/cohesion.html
http://www.geotechdata.info/parameter/angle-of-friction.html
http://www.geotechdata.info/parameter/angle-of-friction.html


Rotational Slides

Geometry and Coordinates

α
x

1

x
3

r

26 / 43



Rotational Slides

Area Element

Size of an area element:

δA = w r δα = w
δx

cosα

with

w = width in x2 direction

δα = angle increment

δx = increment in x1 direction

α
x

1

x
3

r

In integral form:∫
... dA = w r

∫
... dα = w

∫
...

cosα
dx
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Rotational Slides

Overall Factor of Safety

Continuous form:

M = r

∫
σsdA = r2w

∫
σsdα = r w

∫
σs

cosα
dx

As a discrete sum:

M ≈ r
∑
i

σsiδAi ≈ r2w
∑
i

σsiδαi ≈ r w
∑
i

σsi

cosαi
δxi

Overall FoS:

FoS =
Mcrit

M
=

∫ σcrit
s

cosαdx∫
σs

cosαdx
≈
∑

i
σcrit

si
cosαi

δxi∑
i

σsi
cosαi

δxi
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Rotational Slides

Fellenius’ Method

Introduced by W. Fellenius 1929

Earliest and simplest model for rotational slope
failure taking into account the variation in σn and
thus σcrit

s along the slip circle

Also called ordinary method of slices (OMS)

Originally developed in terms of torques for a
discrete set of vertical slices

Can also be derived from a simplified stress tensor

σ =

 0 0 0
0 0 0
0 0 −ρgh


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Rotational Slides

Fellenius’ Method

σn = −ρgh cos2 α

σs = ρgh cosα sinα

σcrit
s = C − σn tanφ = C + ρgh cos2 α tanφ

Local FoS

FoSloc =
σcrit

s

σs
=

C + tanφ ρgh cos2 α

ρgh sinα cosα

=
tanφ

tanα
+

C

ρgh cosα sinα
.
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Rotational Slides

Fellenius’ Method

M = r w

∫
ρgh sinα dx ≈ r w

∑
i

ρghi sinαi δxi

Mcrit = r w

∫ (
C

cosα
+ tanφ ρgh cosα

)
dx ≈ r w

∑
i

(
C

cosαi
+ tanφ ρghi cosαi

)
δxi

FoS =

∫ (
C

cosα + tanφ ρgh cosα
)
dx∫

ρgh sinα dx
≈

∑
i

(
C

cosαi
+ tanφ ρghi cosαi

)
δxi∑

i ρghi sinαi δxi
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Rotational Slides

Bishop’s Method

Introduced by A. W. Bishop 1955

Most widely used model for rotational slope failure

Originally developed in terms of torques for a
discrete set of vertical slices

Can also be derived from a simplified, inconsistent
stress tensor

σ =

 0 0 τ
0 0 0
0 0 −ρgh


with an arbitrary stress τ
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Rotational Slides

Bishop’s Method

σn = −ρgh cos2 α + τ cosα sinα

σs = ρgh cosα sinα + τ cos2 α

σcrit
s = C − σn tanφ

FoSloc =
σcrit

s

σs
=

C + tanφ
(
ρgh cos2 α− τ cosα sinα

)
ρgh cosα sinα + τ cos2 α

τ =
C + ρgh + FoSloc ρgh

+ FoSloc
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Rotational Slides

Bishop’s Method

σcrit
s =

C + tanφ ρgh

1 + tanφ tanα
FoSloc

Combine this σcrit
s with σs from Fellenius’ method.

Assume that FoSloc in the expression for σcrit
s is the overall FoS.

FoS =

∫ C+tanφ ρgh

cosα+ tan φ sin α
FoS

dx∫
ρgh sinα dx

≈

∑
i

C+tanφ ρghi

cosαi+
tan φ sin αi

FoS

δxi∑
i ρghi sinαi δxi
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Rotational Slides

Bishop’s Method

Occurrence of FoS at the right-hand side can be treated
using a fixed-point iteration.

Converges rapidly

Useful initial guess: FoS of Fellenius method

In case we need it:

FoSloc =
σcrit

s

σs
=

C+tanφ ρgh

1+ tan φ tan α
FoS

ρgh cosα sinα

=

C
ρgh + tanφ(

cosα + tanφ sinα
FoS

)
sinα
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Falling

Particle Motion

Neglect air drag and interactions between particles

parabolic traces

~v(t + δt) = ~v(t) + δt ~g

~s(t + δt) = ~s(t) + δt ~v(t) +

valid for any t and δt

Find δt so that

s3(t + δt) = H(s1(t + δt), s2(t + δt))
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Falling

Rebound at the Surface

Source: Dorren, Rockyfor3D (v5.2) revealed, ecorisQ paper, 2016
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https://www.ecorisq.org/docs/Rockyfor3D_v5_2_EN.pdf


Falling

Rebound at the Surface

Simplest approach: normal and tangential components
of the velocity are reduced by different factors

vn → −Rn vn

vt → Rt vt

where

Rn = coefficient of restitution normal to the surface,

depends on the material

Rt = coefficient of restitution parallel to the surface,

mainly depends on the roughness of the surface

38 / 43



Falling

Coefficient of Restitution Normal to the Slope

Source: Dorren, Rockyfor3D (v5.2) revealed, ecorisQ paper, 2016
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https://www.ecorisq.org/docs/Rockyfor3D_v5_2_EN.pdf


Falling

Coefficient of Restitution Parallel to the Slope

Difficult to estimate, e. g.,

Rt =
1

1 +
MOH+Dp

R

with

MOH = representative obstacle height

Dp = depth of penetration

R = radius of the particle
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Falling

Measuring Coefficients of Restitution in Laboratory
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Fahrboeschung and Talweg

Applications of the Talweg Concept to Mass Movements

Simplest “realistic” path of downward movement; relation
H
L = ξ remains valid with L = track length (not a straight line).

Construction of locally aligned coordinate systems for granular
flow models based on continuum mechanics

Savage-Hutter model (1989)
avalanche model RAMMS
Cartesian coordinate system
(Hergarten & Robl, NHESS, 2015)
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Granular Flow

Explanation of the Quadratic Friction Law
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